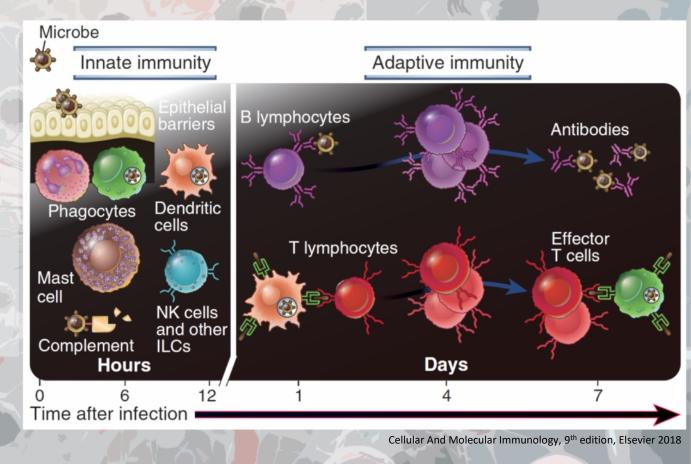
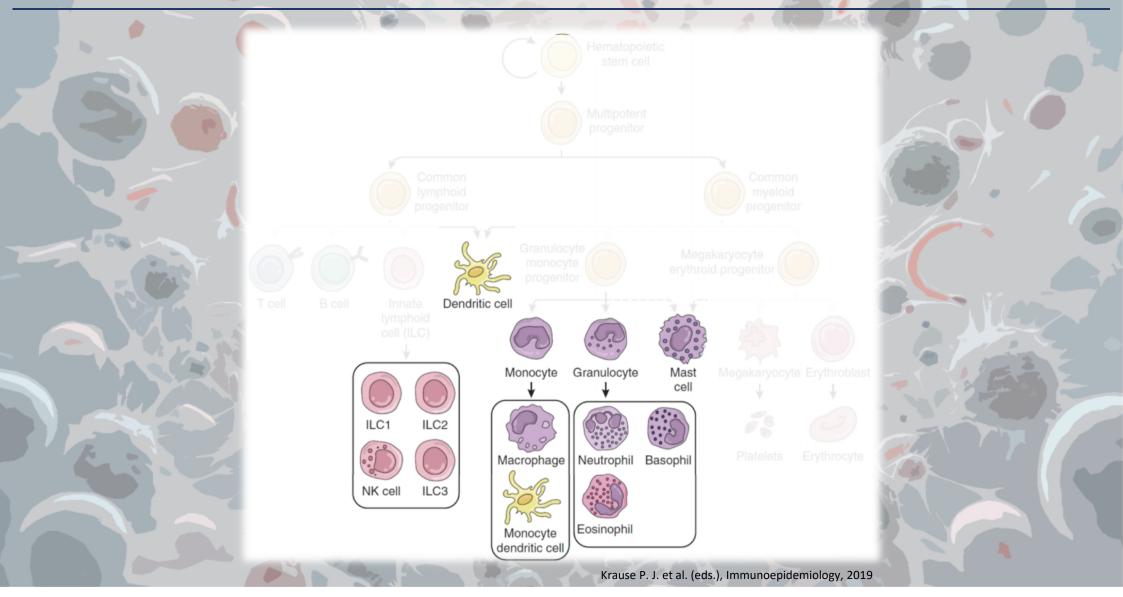
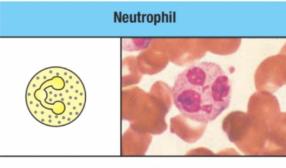


Innate Immunity


Morianos Ioannis, PhD Laboratory of Host Defense and Fungal Pathogenesis School of Medicine, UoC & IMBB/FORTH


FOR H INSTITUTE OF MOLECULAR BIOLOGY & BIOTECHNOLOGY

Properties of innate immunity


- First line of defense (mucosal surfaces, skin barriers)
- Tissue resident and patrolling cells
- Acute response to microbes or damage (within minutes)
- Stimulates and shapes adaptive immune responses
- No antigen specificity
- No immunological memory*

Cells of the immune system

Cells of the innate immune system: Neutrophils

Phagocytosis and activation of bactericidal mechanisms

Janeway's Immunobiology, 9th edition, Garland Science 2017

- 50-70% of all circulating leukocytes
- The first cell type to respond to a chemoattractant and arrive to the site of infection or injury

0.00.00

Lämmermann T. et al. Nature, 2013

- Employ a range of mechanisms to destroy phagocytosed pathogens (e.g. lytic enzymes, ROS/NO)
- Trap and kill extracellular pathogens via the formation of Neutrophil Extracellular Traps (NET)
- Individuals with neutropenia are highly susceptible to deadly infection with a wide range of pathogens and commensal microbes

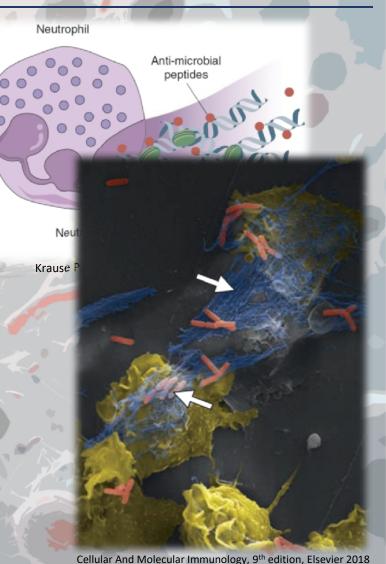
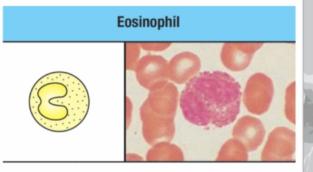
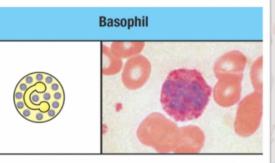
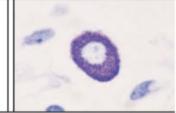




Photo courtesy of Arturo Zychlisky

Cells of the innate immune system: Granulocytes


Killing of antibody-coated parasites

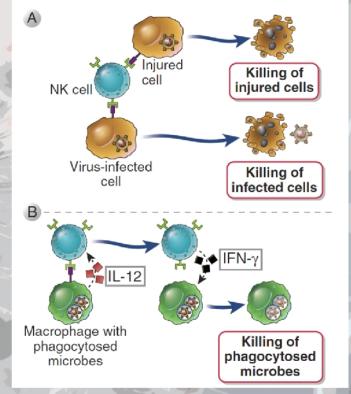
Promotion of allergic responses and augmentation of anti-parasitic immunity

Release of granules containing histamine and active agents

Janeway's Immunobiology, 9th edition, Garland Science 2017

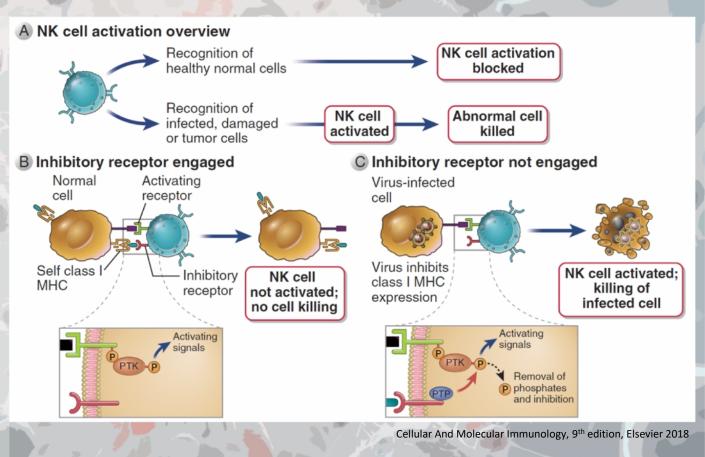
- Low phagocytic activity
- High content of granules containing lytic enzymes and inflammatory mediators
- Released compounds from granules aim to destroy parasites, bacteria and other pathogens
- Molecules released include toxins, histamine, proteases and other inflammatory factors
- Major role in allergic responses (e.g. basophils release Th2 cytokines, IL-5 participates in maturation and activation of eosinophils, IL-13 induces B cells to produce IgE)

Cells of the innate immune system: Natural Killer cells

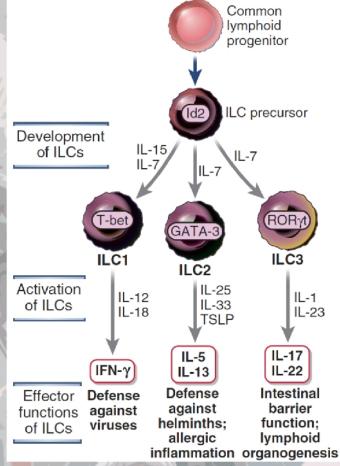

Natural killer (NK) cell

Releases lytic granules that kill some virus-infected cells

Janeway's Immunobiology, 9th edition, Garland Science 2017


- Large granulated cells, compose 5-10% of blood lymphocytes
- Also found in skin, gut, liver, lung
- Interaction with MΦs leads to elimination of phagocytosed pathogens
- Complex sets of activating and inhibitory receptors: balance of signals

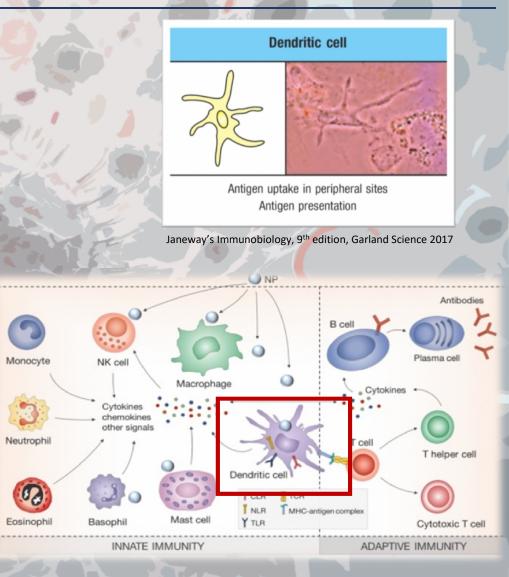
Cellular And Molecular Immunology, 9th edition, Elsevier 2018


Cells of the innate immune system: Natural Killer cells

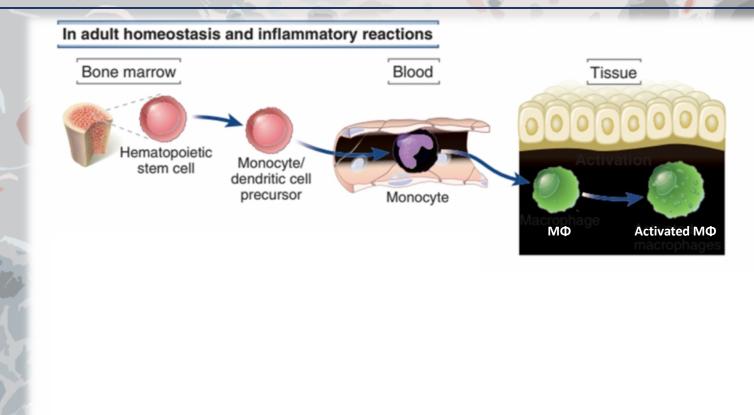
- NK cells express a combination of activating and inhibitory receptors
- Activating receptors recognize cellsurface proteins induced on target cells by infection, transformation or stress
- Inhibitory receptors on NK cells recognize surface molecules such as MHC Class I molecules
- If the MHC I molecules are missing or downregulated (tumor cells, virallyinfected), activating signals prevail
- Stimulation of activating receptors leads to the release of cytokines and chemokines that enhance NK cell cytotoxic capacity

Cells of the innate immune system: Innate Lymphoid Cells

- In 2008 studies from 12 independent laboratories around the world discovered ILCs as the new players within the lymphocyte compartment
- Primarily tissue resident cells, found in both lymphoid and non-lymphoid tissues and rarely in the blood
- Categorized into three main groups (ILC1, ILC2, and ILC3) based on their cytokine profiles and roles
- ILC groups resemble Th cell types
- Play a role in the defense against viruses, bacteria and parasites and maintain tissue homeostasis
- Aberrant ILC-related immune responses can lead to autoimmunity (IBD) and allergic responses (asthma)



Cellular And Molecular Immunology, 9th edition, Elsevier 2018


Cells of the innate immune system: Dendritic Cells

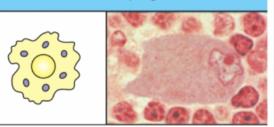
- Named after their 'tree-like' or dendritic shapes
- DCs are found in the skin, gastrointestinal tract, respiratory system, spleen and in circulation
- Immature DCs surveil and sample peripheral tissues for pathogens, dead/damaged cells and other non-self particles
- Mature DCs migrate to lymph nodes and present antigens to naïve T cells
- "Sentinels" of the immune system, recognize microbial pathogens, secrete cytokines, enhance/initiate innate and adaptive responses

The bridge between innate and adaptive immunity

Cells of the innate immune system: Monocytes & Macrophages

Cellular And Molecular Immunology, 9th edition, Elsevier 2018

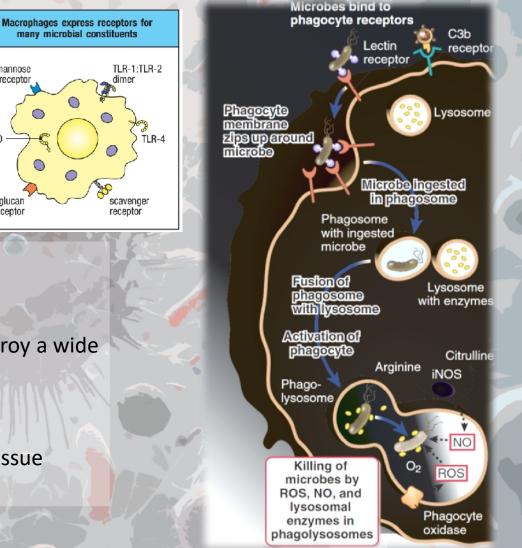
Cells of the innate immune system: Monocytes & Macrophages


mannose recepto

NOD

glucan

receptor

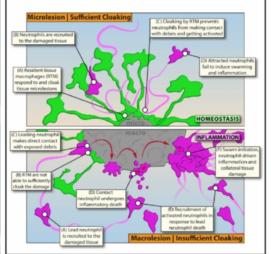

Macrophage

Phagocytosis and activation of bactericidal mechanisms Antigen presentation

Janeway's Immunobiology, 9th edition, Garland Science 2017

- Monocytes \rightarrow patrolling cells
- Macrophages \rightarrow tissue resident cells
- Both are professional phagocytes which sense and destroy a wide array of pathogens
- They exhibit antigen presentation activity
- They can initiate inflammatory responses or maintain tissue homeostasis via differential cytokine secretion

Cellular And Molecular Immunology, 9th edition, Elsevier 2018


Macrophages and homeostasis maintenance

Cell

Article

Resident Macrophages Cloak Tissue Microlesions to Prevent Neutrophil-Driven Inflammatory Damage

Graphical Abstract

Authors Stefan Uderhardt, Andrew J. Martins, John S. Tsang, Tim Lämmermann, Ronald N. Germain

Cell

Macrophages Maintain Epithelium Integrity by Limiting Fungal Product Absorption

Authors

In Brief

Aleksandra S. Chikina.

Correspondence

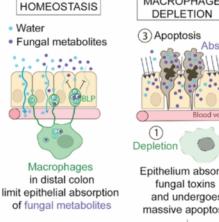
toxins/metabolites.

Ana-Maria Lennon-Duménil

Protrusions on distal colonic

Ilivan D. Iliev, Danijela Matic Vignjevic.

danijela.vignjevic@curie.fr (D.M.V.),


ana-maria.lennon@curie.fr (A.-M.L.-D.)

macrophages orchestrate fluid sampling,

which is critical to protect epithelial cells from absorbing fluids enriched in fungi

Graphical Abstract

Water

Loss of barrier integrity

Cell

Patrolling Alveolar Macrophages Conceal Bacteria from the Immune System to Maintain Homeostasis

Graphical Abstract

nai inte	ction		
ed, ed on			*
\Rightarrow	*	10. Althou	
ial /th, ition			5
HUOP1		100	7

vat

rati

e alveolar spaces

ement toward inhaled bacteria

for bacterial clearance

d during viral infection

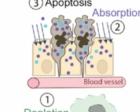
Chikina et al., 2020, Cell

Article

Authors

Arpan Sharma Neupane, Michelle Willson, Andrew Krzysztof Chojnacki, Craig Jenne, Ajitha Thanabalasuriar, Paul Kubes

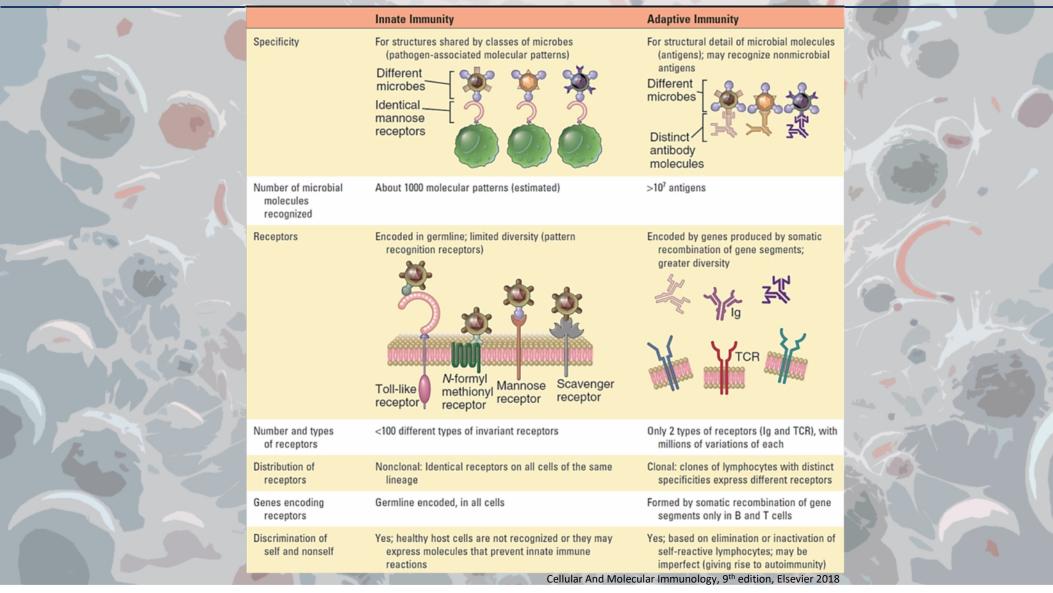
Correspondence


ajitha.thanabalasuriar@mcgill.ca (A.T.), pkubes@ucalgary.ca (P.K.)

In Brief

Neupane et al. develop an intravital method to image alveolar macrophages in the lung in real time, overcoming the challenge presented by the air-liquid-air barrier of the alveoli. They use this in vivo approach to show that alveolar macrophages move between alveoli to provide efficient immune surveillance of the airway and phagocytosis of inhaled bacteria before they can induce harmful lung inflammation. Furthermore, they show that respiratory virus infections can interfere with alveolar macrophage surveillance, leading to bacterial superinfection.

Neupane et al., 2020, Cell


MACROPHAGE

Epithelium absorbs fungal toxins

and undergoes massive apoptosis

Innate immune system: Type of specificity

Innate immune system: Pattern Recognition Receptors

Pattern Recognition Receptors	Location	Specific Examples	Ligands (PAMPs or DAMPs)				Microbe Ty
Cell-Associated	Loouton				Pathogen-Associa	ated Molecular Patte	erns
	Plasma membrane and endosomal membranes of DCs, phagocytes, B cells,	TLRs 1–9	Various microbial molecules including bacterial LPS and peptidoglycans; viral nucleic acids		Nucleic acids	ssRNA dsRNA CpG	Virus Virus Virus, bacte
	endothelial cells, and many other cell types			10	Proteins	Pilin Flagellin	Bacteria Bacteria
NLRs	Cytosol of phagocytes, epithelial cells, and other	NOD1/2 NLRP family	Bacterial cell wall peptidoglycans Intracellular crystals (urate, silica);	1 contraction	Cell wall lipids	LPS	Gram-negat bacteria
	cells	(inflammasomes)	changes in cytosolic ATP and ion concentrations; lysosomal damage			Lipoteichoic acid	Gram-positi bacteria
RLRs	Cytosol of phagocytes and other cells	RIG-1, MDA-5	Viral RNA	NAS-	Carbohydrates	Mannan Glucans	Fungi, bacto Fungi
CDSs	Cytosol of many cell types	AIM2; STING- associated CDSs	Bacterial and viral DNA	7 n - 1	Damage-Associat	ted Molecular Patter	-
				42 4	Stress-induced	HSPs	_
CLRs	Plasma membranes of phagocytes	Mannose receptor DC-sign	Microbial surface carbohydrates with terminal mannose and fructose		proteins		
	phagocytes	Dectin-1, Dectin-2	Glucans present in fungal and bacterial cell walls		Crystals	Monosodium urate	-
Scavenger receptors	Plasma membranes of phagocytes	CD36	Microbial diacylglycerides		Proteolytically cleaved extracellular matrix	Proteoglycan peptides	_
N-Formyl met-leu-phe receptors	Plasma membranes of phagocytes	FPR and FPRL1	Peptides containing <i>N</i> -formylmethionyl residues		Mitochondria and mitochondrial components	Formylated peptides and ATP	-
8.8					Nuclear proteins	HMGB1, histones	-

Innate immune system: Soluble Pattern Recognition Receptors

Pattern Recognition Receptors Soluble	Location	Specific Examples	Ligands (PAMPs or DAMPs)		Phagocytes (neutrophils, dendritic cells, macrophages) PAMPs recognized by pattern recognition receptors (PRRs)	Pathogen-associat molecular pattern (PAMPs)	
Pentraxins	Plasma	C-reactive protein	Microbial phosphorylcholine and phosphatidylethanolamine		Pathogen killed and degraded in lysosomes	SP-A, SP-D,	C-reactive protein (CRP)
Collectins	Plasma Alveoli	Mannose-binding lectin Surfactant proteins SP-A and SP-D	Carbohydrates with terminal mannose and fructose Various microbial structures	produce anti-microbial components, followed by secretion of inflammation-	Phagocytosis	Sr-A, SP-D, Mannose- binding lectin (MBL)	Complement proteins Membrane damage kills pathogen
Ficolins	Plasma	Ficolin	N-acetylglucosamine and lipoteichoic acid components of the cell walls of gram-positive bacteria	promoting cytokines and chemokines Op	osonins are recognized		
Complement	Plasma	Various complement proteins	Microbial surfaces		opsonin receptors, hancing phagocytosis	Opsonized pathogen	CRP, MBL, complement proteins activate complement pathway
	Ce	llular And Molecular Im	munology, 9 th edition, Elsevier 2018	Kuby Immund	ology, 7th Edition, W.H. Freem	an, 2013	Complement destroys membrane, stimulates inflammation, attracts neutrophils and other cells
		A Startes					

Properties of innate immunity

 Innate immune cells have specificity for PAMPs and DAMPs via recognition from PRRs

□ What about memory?

Cell Host & Microbe Perspective

Trained Immunity: A Memory for Innate Host Defense

Mihai G. Netea,^{1,*} Jessica Quintin,¹ and Jos W.M. van der Meer¹

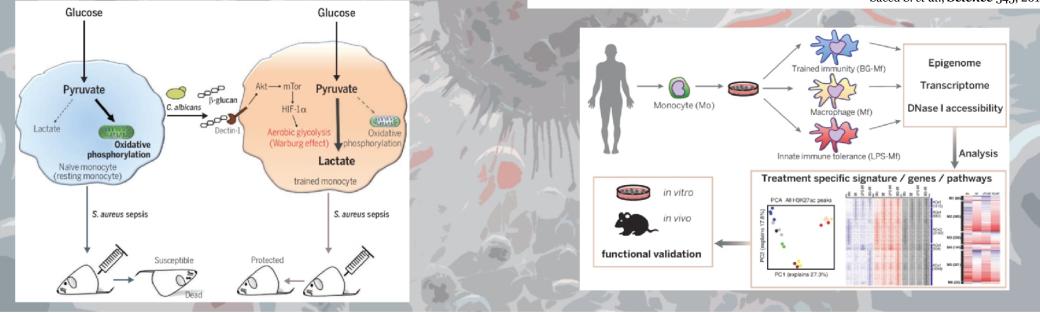
¹Department of Medicine and Nijmegen Institute for Infection, Inflammation, and Immunity, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands *Correspondence: m.netea@aig.umcn.nl

DOI 10.1016/j.chom.2011.04.006

Cell Host & Microbe 9, May 19, 2011 ©2011 Elsevier Inc.

Table 1. Selected Experimental Models in which Biological Activity Compatible with the Concept of Trained Innate Immunity Has Been Reported

Reported						
Organism	Experimental Model	Biological Effect	Specificity	References		
Plants-Systemic Acquired Resistance						
Large variety of plants	Viruses, bacteria, fungi	Protection against reinfection	Variable	Durrant and Dong, 2004; Sticher et al., 1997		
Nonvertebrates						
Mealworm beetle	LPS, or bacterial prechallenge	Protection against secondary infection	No	Moret and Siva-Jothy, 2003		
Drosophila	S. pneumoniae prechallenge	Protection against S. pneumoniae	Uncertain	Pham et al., 2007		
Anopheles gambiae	Plasmodium prechallenge	Protection against Plasmodium	No	Rodrigues et al., 2010		
Sponges	Transplantation	Rejection	Yes	Hildemann et al., 1979		
Corals	Transplantation	Rejection	Yes	Hildemann et al., 1977		
Vertebrates						
Mice	BCG	Protection against candidiasis	No	Van 't Wout et al., 1992		
Mice	Candida vaccination	T/B cell-independent protection	No	Bistoni et al., 1986, 1988		
Mice	Murine CMV infection	NK-dependent protection	No	Sun et al., 2009		
Humans	BCG	Nonspecific protection to secondary infections	No	Garly et al., 2003		

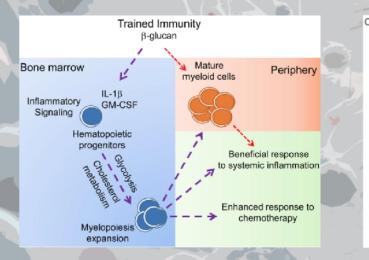

Cheng S-C. et al., **Science** 345, 2014

mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity

Shih-Chin Cheng, Jessica Quintin, Robert A. Cramer, Kelly M. Shepardson, Sadia Saeed, Vinod Kumar, Evangelos J. Giamarellos-Bourboulis, Joost H. A. Martens, Nagesha Appukudige Rao, Ali Aghajanirefah, Ganesh R. Manjeri, Yang Li, Daniela C. Ifrim, Rob J. W. Arts, Brian M. J. W. van der Meer, Peter M. T. Deen, Colin Logie, Luke A. O'Neill, Peter Willems, Frank L. van de Veerdonk, Jos W. M. van der Meer, Aylwin Ng, Leo A. B. Joosten, Cisca Wijmenga, Hendrik G. Stunnenberg, Ramnik J. Xavier, Mihai G. Netea*

Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity

Sadia Saeed,^{1*} Jessica Quintin,^{2*} Hindrik H. D. Kerstens,^{1*} Nagesha A. Rao,^{1*} Ali Aghajanirefah,^{1*} Filomena Matarese,¹ Shih-Chin Cheng,² Jacqueline Ratter,² Kim Berentsen,¹ Martijn A. van der Ent,¹ Nilofar Sharifi,¹ Eva M. Janssen-Megens,¹ Menno Ter Huurne,¹ Amit Mandoli,¹ Tom van Schaik,¹ Aylwin Ng,^{3,4} Frances Burden,^{5,6} Kate Downes,^{5,6} Mattia Frontini,^{5,6} Vinod Kumar,⁷ Evangelos J. Giamarellos-Bourboulis,⁸ Willem H. Ouwehand,^{5,6} Jos W. M. van der Meer,² Leo A. B. Joosten,² Cisca Wijmenga,⁷ Joost H. A. Martens,¹ Ramnik J. Xavier,^{3,4} Colin Logie,¹[†] Mihai G. Netea,²[†] Hendrik G. Stunnenberg¹[†]



Cell 172, 135-146, January 11, 2018 © 2017 Elsevier Inc.

Article

Metabolic Induction of Trained Immunity through the Mevalonate Pathway

Siroon Bekkering,^{1,2,10} Rob J.W. Arts,^{1,10} Boris Novakovic,³ Ioannis Kourtzelis,⁴ Charlotte D.C.C. van der Heijden,¹ Yang Li,⁸ Calin D. Popa,⁵ Rob ter Horst,¹ Julia van Tuijl,¹ Romana T. Netea-Maier,⁹ Frank L. van de Veerdonk,¹ Triantafyllos Chavakis,⁴ Leo A.B. Joosten,^{1,6} Jos W.M. van der Meer,¹ Henk Stunnenberg,³ Niels P. Riksen,^{1,11,*} and Mihai G. Netea^{1,7,11,12,*}

Cell 172, 147-161, January 11, 2018 © 2017

Article

Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity

Ioannis Mitroulis,^{1,18,*} Klara Ruppova,^{1,16} Baomei Wang,^{2,16} Lan-Sun Chen,^{1,16} Michal Grzybek,^{3,4,16} Tatyana Grinenko,¹ Anne Eugster,⁵ Maria Troullinaki,¹ Alessandra Palladini,^{1,3,4} Ioannis Kourtzelis,¹ Antonios Chatzigeorgiou,¹ Andreas Schlitzer,⁶ Marc Beyer,^{7,8} Leo A.B. Joosten,⁹ Berend Isermann,¹⁰ Mathias Lesche,¹¹ Andreas Petzold,¹¹ Kai Simons,^{12,13} Ian Henry,¹² Andreas Dahl,¹¹ Joachim L. Schultze,^{7,14} Ben Wielockx,¹ Nicola Zamboni,¹⁵ Peter Mirtschink,¹ Ünal Coskun,^{3,4} George Hajishengallis,^{2,17} Mihai G. Netea,^{7,9,17} and Triantafyllos Chavakis^{1,17,19,*}

Cell

Cell

Cell

CellPress OPEN ACCESS

Cell

Article

Innate Immune Training of Granulopoiesis Promotes Anti-tumor Activity

Lydia Kalafati,^{1,2,14} Ioannis Kourtzelis,^{1,2,3,14,*} Jonas Schulte-Schrepping,⁴ Xiaofei Li,⁵ Aikaterini Hatzioanno Tatyana Grinenko,¹ Eman Hagag,¹ Anupam Sinha,^{1,2} Canan Has,¹ Sevina Dietz,⁷ Antonio Miguel de Jesus D Marina Nati,¹ Sundary Sormendi,¹ Ales Neuwirth,¹ Antonios Chatzigeorgiou,¹ Athanasios Ziogas,¹ Mathias I Andreas Dahl,⁹ Ian Henry,⁸ Pallavi Subramanian,¹ Ben Wielockx,¹ Peter Murray,¹⁰ Peter Mirtschink,¹ Kyoung-Joachim L. Schultze,^{4,11} Mihai G. Netea,^{4,12} George Hajishengallis,^{5,15} Panayotis Verginis,^{1,6,15} Ioannis Mitro and Triantafyllos Chavakis^{1,13,15,16,*}

CellPress

Article

Trained Immunity-Promoting Nanobiologic Therapy Suppresses Tumor Growth and Potentiates Checkpoint Inhibition

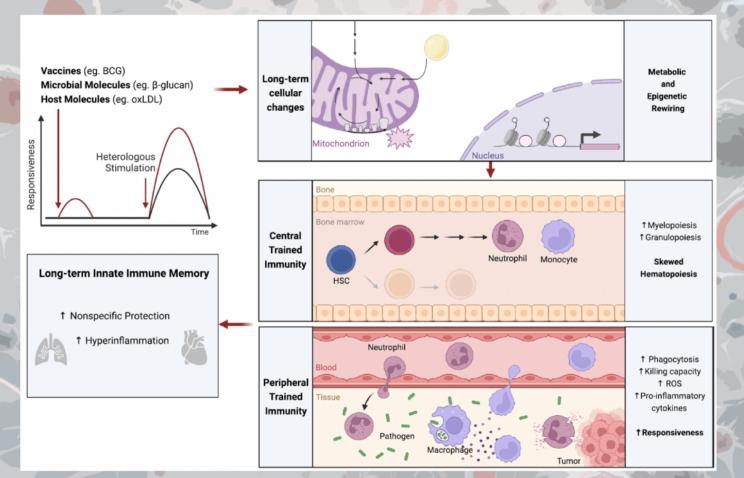
Bram Priem,^{1,2,3,4} Mandy M.T. van Leent,^{1,2,3} Abraham J.P. Teunissen,^{1,2} Alexandros Marios Sofias,^{1,2,6} Vera P. Mourits,⁶ Lisa Willemsen,³ Emma D. Klein,^{1,2} Roderick S. Oosterwijk,^{1,2} Anu E. Meerwaldt,^{1,2,7} Jazz Munitz,^{1,2} Geoffrey Prévot,^{1,2} Anna Vera Verschuur,^{1,2} Sheqouia A. Nauta,^{1,2} Esther M. van Leeuwen,^{1,2} Elizabeth L. Fisher,^{1,2} Karen A.M. de Jong,^{1,2} Yiming Zhao,^{1,2} Yohana C. Toner,^{1,2} Georgios Soultanidis,^{1,2} Claudia Calcagno,^{1,2} Paul H.H. Bomans,⁶ Heiner Friedrich,⁸ Nico Sommerdijk,⁹ Thomas Reiner,^{10,11} Raphaël Duivenvoorden,^{1,2,12} Eva Zupančič,^{1,2} Julie S. Di Martino,¹³ Ewelina Kluza,³ Mohammad Rashidian,¹⁴ Hidde L. Ploegh,¹⁴ Rick M. Dijkhuizen,⁷ Sjoerd Hak,⁶ Carlos Pérez-Medina,^{1,2,15} Jose Javier Bravo-Cordero,¹³ Menno P.J. de Winther,^{3,16} Leo A.B. Joosten,^{17,18} Andrea van Elsas,¹⁹ Zahi A. Fayad,^{1,2} Alexander Rialdi,³⁰ Denis Torre,²⁰ Ernesto Guccione,^{20,21} Jordi Ochando,^{20,22} Mihai G. Netea,^{6,23,24} Arjan W. Griffioen,⁴ and Willem J.M. Mulder^{1,2,20,25,26,*} Nat Immunol. 2023 February ; 24(2): 239-254. doi:10.1038/s41590-022-01388-8.

Inducing trained immunity in pro-metastatic macrophages to control tumor metastasis

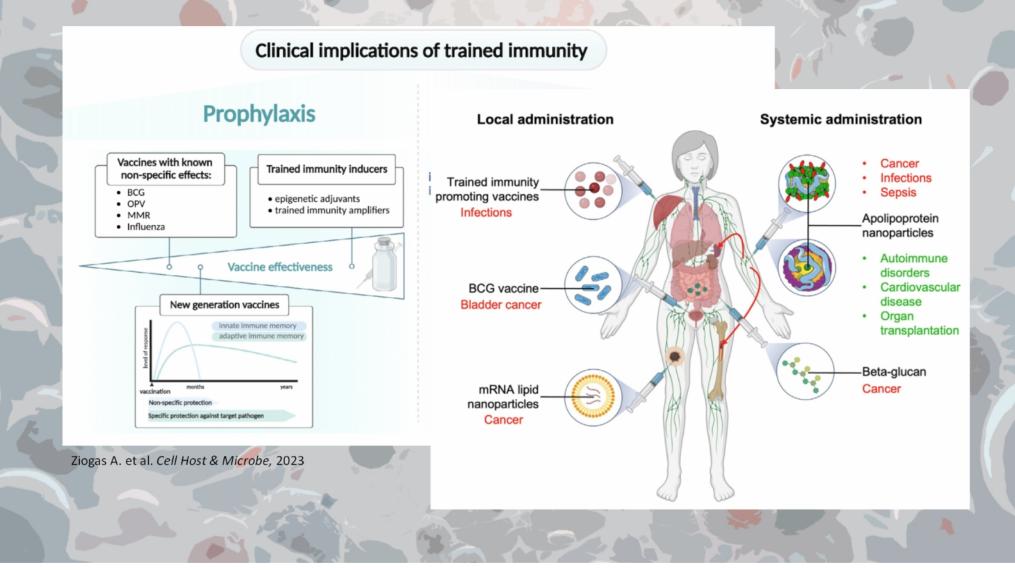
Chuanlin Ding^{1,11}, Rejeena Shrestha^{2,11}, Xiaojuan Zhu¹, Anne E. Geller², Shouzhen Wu¹, Matthew R. Woeste^{1,2}, Wenqian Li³, Haomin Wang⁴, Fang Yuan⁵, Raobo Xu⁵, Julia H. Chariker⁶, Xiaoling Hu¹, Hong Li⁷, David Tieri⁸, Huang-Ge Zhang², Eric C. Rouchka^{8,9}, Robert Mitchell¹, Leah J. Siskind¹⁰, Xiang Zhang⁵, Xiaoji G. Xu⁴, Kelly M. McMasters¹, Yan Yu³, Jun Yan^{1,2,≅}

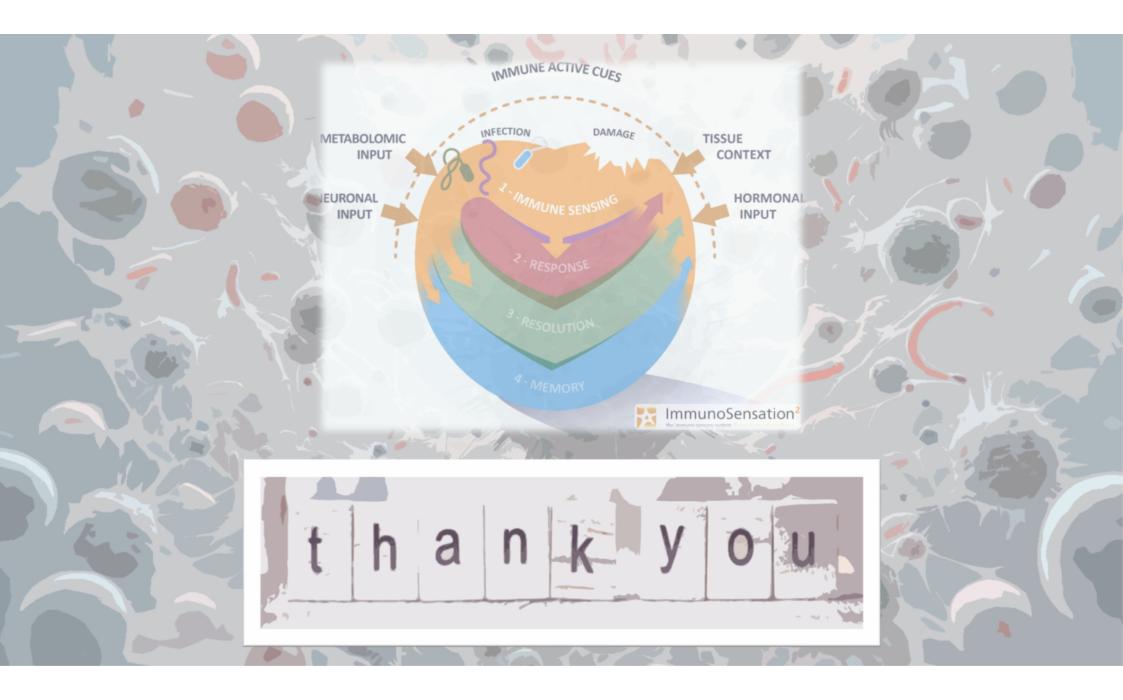
nature immunology

Article


https://doi.org/10.1038/s41590-023-01428-x

Influenza-trained mucosal-resident alveolar macrophages confer long-term antitumor immunity in the lungs


Received: 12 April 2022


Tao Wang¹², Jinjing Zhang¹², Yanling Wang¹², Ying Li¹², Lu Wang¹², Yangle Yu¹² & Yushi Yao **©** ¹²

Accepted: 9 January 2023

Ferreira A.v. et al. Seminars in Immunopathology, 2024

