

Complement system: from pathogenesis to clinical application

Ioannis Mitroulis

Associate Professor of Internal Medicine

Democritus University of Thrace

The complement system

- 30 enzymes circulating in serum in an inactive state
- Indicated with letter (C) and number
- Activation triggered via different pathways after pathogen recognition
- Sequential activation of components by proteolysis

Janeway, Immunobiology, Garland Science

The complement system

Markieweski and Lambris, Am J Pathol, 2007 Guo and Ward, Annu Rev Immunol, 2005

Initial activation

C3 convertase

Alternative pathway→ C3(H2O)Bb

Classical and lectin pathway→ C4b2a

C5 convertase

Late steps of complement activation: formation of the membrane attack complex (MAC)

- Alternative Pathway is permanently active at low levels to survey for presence of pathogens.
- Healthy host cells are protected against complement.
- The three pathways are activated on the surface of apoptotic cells to ensure homeostasis.
- Complement is only fully activated during infection.

Pathogen recognition

Complement activation and inhibition in normal vs apoptotic cells

Complement dependent phagocytosis

а

To sum up

West and Kemper, Nat Rev Nephrol. 2023

Complement in disease pathogenesis

Infection and infection-associated pathology

- Respiratory tract infections (C3, C3aR, CD46)
- Immunodeficiency (C3)
- SARS-CoV-2-induced lung pathology (C3)

Cardiovascular disease

- Atherosclerosis (C5, C5aR1)
- Plague destabilization (C5, C5aR1)

- Colon cancer (C1q, C1qBP)
- Bladder cancer (CD46)

Kidney disease

- Renal endothelial dysfunction (FH)
- Injury-induced nephropathy (C5, C5aR1)
- Fibrosis (C5, C5aR1)
- Clear-cell renal cell carcinoma (FH, C1)

Autoimmunity - arthritic disease

- Rheumatoid arthritis (C3, CD46)
- SLE (C1q, C3, C5, CD46, FH)
- Scleroderma (C3, C5, C5aR1, CD46)

Diabetes and metabolic syndrome

- Diabetes (C3, CD59)
- Non-alcoholic fatty liver disease (C3)

CD59

IBD

- Crohn's disease (C3, C3aR)

Potential complosome-driven disease

- AMD (FHR-3)
- · Ageing-related pathological conditions of tissue
- · COPD, asthma
- · C3 glomerulopathies, lupus nephritis
- Chronic neuroinflammation (for example, AD and MS)
- · Diseases driven by defects in haematopoiesis

FHR-3 666

Complement in disease

6/10/2025

Genetics of complement deficiencies

Table 3 Summary of complement deficiencies in humans							
Complement component involved	Frequency	Main disease association(s)	Reference(s)				
C1q	50–100 reported cases	SLE; glomerulonephritis; infections	Skattum et al. ⁷				
C1r or C1s	10-50 reported cases	SLE; glomerulonephritis	Wu et al. ¹⁰⁶				
C2 C3 C4 MBL Factor D	Estimated prevalence 1/20,000* 20–50 reported cases 20–50 reported cases Estimated prevalence 1/10* <20 reported cases	SLE; infections SLE; glomerulonephritis; recurrent infections SLE; glomerulonephritis; infections Susceptibility to infections Neisserial infections	Skattum et al. ⁷				
Properdin	50–100 reported cases	Meningococcal disease	Fijen et al. ¹⁰⁷				
C5, C6, C7 or C8	20–100 reported cases	Usually healthy; recurrent neisserial infections	Skattum et al. ⁷				
C9	<10 reported cases Estimated prevalence 1/1,000‡	Usually healthy	Skattum et al. ⁷ Witzel-Schlömp et al. ¹⁰⁸				
C1Inh	Estimated prevalence 1/50,000§	Hereditary angioedema	Skattum et al.7				

^{*}Estimated prevalence in white populations. ‡Rare deficiency in white populations, but common in the Japanese population (prevalence of about 0.1%). §Heterozygous deficiency. Abbreviations: C1Inh, plasma protease C1 inhibitor; MBL, mannose-binding lectin; SLE, systemic lupus erythematosus.

Hereditary Angioedema

AUTOIMMUNE HEMOLYTIC ANEMIA

- Acute extravascular hemolysis
- Autoantibodies are directed against RBC components (eg, Kell antigen)
- May be warm-reacting (IgG) or cold-reacting (IgM) antibody

NATURE OF THE AUTOANTIBODIES

- • IgG antibodies react with protein antigens on the RBC surface at body temperature "warm agglutinins".
- • IgM antibodies react with polysaccharide antigens on the RBC surface only at temperatures below that of the core temperature of the body "cold agglutinins."
- Antibodies of the IgA isotype are much less common and often of unknown significance.

Pathogenesis of Autoimmune Hemolytic Anemia

Berentsen et al, Ther Adv Hematol, 2019

Paroxysmal Nocturnal Hemoglobinuria

Genetics of PNH

Charles J. Parker, Hematology Am Soc Hematol Educ Program, 2016.

Diagnosis of PNH

Charles J. Parker, Hematology Am Soc Hematol Educ Program, 2016.

Complement-Mediated Hemolysis

Charles J. Parker, Hematology Am Soc Hematol Educ Program, 2016.

Pathogenesis of PNH

Treatment of Paroxysmal Nocturnal Hemoglobinuria

• Transfus Med Hemother. 2024;51(5):310-320. doi:10.1159/000540474

Breakthrough hemolysis

10/6/2025 Risitano, BJH, 2021

Breakthrough hemolysis

10/6/2025 Risitano, BJH, 2021

					- ······· r - r ·······	,	
Terminal inhibitors	Ravulizumab	C5	NCT02598583 NCT02605993	Phase I/II, open-label Phase I/II, open-label	Untreated PNH Untreated PNH	Intra-patient DE by IV infusions MAD; IV infusions	Yes ⁹⁵
				Phase III, randomized <i>versus</i> Ecu	Untreated PNH	•	Yes ^{47,48,96}
			NCT02946463 NCT03056040	Phase III, randomized <i>versus</i> Ecu Phase III, randomized <i>versus</i> Ecu		IV infusions (every eight weeks)	Yes ^{47,48,79}
	C1:1-	C.		-	Stable responders PNH	IV infusions (every eight weeks)	Yes ⁸³
	Crovalimab	C5	NCT03157635	Phase I/II, multi-part study	Untreated PNH and stable responders PNH	Intra-patient DE by IV infusions, followed by SC injections	res
	LFG316	C5	NCT02534909	Phase II, open-label	Untreated PNH	IV infusions	Pending
	(tesidolumab)						
	REGN3918	C5	NCT03946748	Phase II, open-label, POC	Untreated PNH	IV and SC infusions	Pending
	(pozelimab)		NCT04162470	Phase II, open-label, extension	Pozelimab-treated PNH	IV and SC infusions	Ongoing
	ABP959	C5	NCT03818607	Phase III, randomized versus Ecu	Stable responders PNH	IV infusions	Ongoing
	Elizaria	C5	NCT04463056	Phase III, randomized versus Ecu	Untreated and	IV infusions	Pending
					eculizumab-treated PNH		
Proximal	Pegcetacoplan	C3	NCT02264639	Phase Ib, open label, MAD, POC	Poor responders PNH	Daily, SC infusions	Yes ⁸⁶
1	_		NCT02588833	Phase Ib, open label, MAD, POC	Untreated PNH	Daily, SC infusions	
			NCT03531255	Phase III, open label, extension	PNH exposed to APL-2	Daily, SC infusions	
			NCT03500549	Phase III, randomized versus Ecu	Poor responders PNH	SC infusions, BIH	Yes ⁸⁷
	Danicopan	FD	NCT03053102	Phase Ib, open label, MD, POC	Untreated PNH	Orally, TID	Yes ⁸⁹
			NCT03181633	Phase II, open-label, extension	PNH exposed to ACH-4471	Orally, TID	Ongoing
			NCT03472885	Phase II, open label, MD, POC	Poor responders PNH	Orally, TID	Yes ⁹⁰
			NCT04469465	Phase III, randomized versus Ecu	Phase III, randomized vs Ecu	Orally, TID	Ongoing
	ACH5020	FD	NCT04170023	Phase II, open label, POC	Danicopan-treated PNH,	Orally, BID	Ongoing
					poor-responders to anti-C5		
					and untreated PNH		
	BCX9930	FD	NCT04330534	Phase I–II	PNH untreated	Orally, BID	Pending
			NCT04702568	Phase II, open label, extension	PNH, BCX9930-treated	Orally, BID	Ongoing
	Iptacopan	FB	NCT03439839	Phase II, open label, POC	Poor responders PNH	Orally, BID	Yes ⁹³
	_		NCT03896152	Phase II, open label, POC	Untreated PNH	Orally, BID	Pending
			NCT04558918	Phase III, randomized versus Ecu	Poor responders PNH	Orally, BID	Ongoing

BID, bis in die (twice a day); BIH, bis in hebdomade (twice a week); DE, dose escalation; Ecu, eculizumab; IV, intravenous; LDH, lactate dehydrogenase; MAD, multiple ascending doses; MD, multiple

On-label and Off-label Studies of Eculizumab

Complement inhibitors in the treatment of treatment of glomerular disorders

Nature Reviews | Immunology

Van der Poll, et al, Nat Rev Immunol, 2017

Neutrophil extracellular traps

Fuchs et al, PNAS, 2010

NETs provide a scaffold for platelet adhesion and aggregation

Schreiber et al, PNAS, 2017

NETs activate alternative complement pathway

Chen et al, Nat Rev Nephrol, 2017

Complement-NETs-VTE in ANCA vasculitis

Thank you for your attention