Immune cell plasticity in inflammatory arthritis, to be or not to be? A Mechanisms of autoimmunity

Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Πανεπιστήμιο Ιωαννίνων

Επικ. Καθηγητής Αχιλλέας Φλούδας, Ομάδα Μεταφραστικής Ανοσολογίας Εργαστήριο Βιολογίας

Translational Immunology Group

Team

Assistant Professor **Achilleas Floudas**

PhD Candidate Roozbeh Senai

Dr Konstantinos Panagiotidis

PhD Candidate Daphni **Doulaptsi-Teeuwen**

Ospidéal Beaumont

Dublin City University

Sláinte

Translational Immunology Group

Natalia Papageorgiou

MSc Student - Medicine

George Margetis

BSc Student - BET

Stefanos Tsavdaridis

BSc Student - BET

Healthy

Imprecision of Medicine.

How we view immune cells.

Schork N, Nature 2015

Polyfunctionality

DuPage and Bluestone, Nature Reviews 2016

Synovial poly-T cells predate clinical inflammation in RA.

% IFN-g⁺ % CD161⁺ % IL-2⁺ % TNF-a⁺ ••••••••• RA IAR 0000 000 00-0 0 02 **•** • • Healthy-0 0 • • • • 0 600 20 40 60 80 100 20 40 60 80 0 20 40 20 40 60 800 0 % IL-22+ % IL-4⁺ % GMCSF⁺ % IL-17A⁺ RA **898** • 6 0 00 or and a c **Po**B IAR 0 0 Healthy 0 HO Ø 10 15 20 25 0 10 20 30 40 50 0 20 40 60 80 100 10 15 200 5 0 5

Gated on: CD3+CD4+ Healthy IAR 3.45 20.7 2.46 8.93 48.3 27.6 65.8 22.8 **Biopsy-FMO** RA 3.65 3.81 0 76.1 16.4 86.5 13.5 GMCSF

CD4⁺CD8⁺ T cells accumulate at the site of inflammation in RA.

CD4⁺CD8⁺ T cells are detected within ectopic lymphoid organs in RA.

CD4⁺CD8⁺ T cells show signs of resistance to suppression by autologous Treg cells.

Healthy

First use of tofacitinib to treat an immune checkpoint inhibitor-induced arthritis.

А

The rheumatology team did a biopsy to my right knee and I was diagnosed with Inflammatory Arthritis. I felt a glimmer of hope knowing I was under a superb team.

I can exercise again, work again and enjoy my life with my wife again. ... they have given me hope and a new lease of life that I cherish so much now. Thank you to all the amazing medical staff I owe my life to.

Murray, Floudas et al., BMJ case reports 2021

Immune cell plasticity

Arthritis & Rheumatology Vol. 72, No. 4, April 2020, pp 677-686 DOI 10.1002/art.41150 © 2019, American College of Rheumatology AMERICAN COLLEGE of RHEUMATOLOGY Empowering Rheumatology Professionals

Increased T Cell Plasticity With Dysregulation of Follicular Helper T, Peripheral Helper T, and Treg Cell Responses in Children With Juvenile Idiopathic Arthritis and Down Syndrome-Associated Arthritis

C. Foley,¹ C. Foley,¹ A. Floudas,² M. Canavan,² M. Biniecka,³ E. J. MacDermott,⁴ D. J. Veale,³ R. H. Mullan,⁵ C. G. Killeen,⁴ and U. Fearon²

Loss of balance between protective and pro-inflammatory synovial tissue T-cell polyfunctionality predates clinical onset of rheumatoid arthritis

(b) Achilleas Floudas¹, Nuno Neto^{2, 2}, Carl Orr³, Mary Canavan¹, Phil Gallagher⁴, Conor Hurson⁴, (b) Michael G Monaghan², Sunil Nagpar⁵, Ronan H Mullan⁶, (b) Douglas J Veale³, (b) Ursula Fearon¹

Rheumatoid arthritis

TRANSLATIONAL SCIENCE

Distinct stromal and immune cell interactions shape the pathogenesis of rheumatoid and psoriatic arthritis

Achilleas Floudas (1), ^{1,2} Conor M Smith (2), ³ Orla Tynan, ^{1,2} Nuno Neto, ⁴ Vinod Krishna, ⁵ Sarah M Wade (2), ^{1,2} Megan Hanlon, ^{1,2} Clare Cunningham, ^{1,2} Viviana Marzaioli, ^{1,2} Mary Canavan, ^{1,2} Jean M Fletcher, ³ Ronan H Mullan, ⁶ Suzanne Cole, ⁵ Ling-Yang Hao, ⁵ Michael G Monaghan (2), ⁴ Sunil Nagpal (2), ⁵ Doudlas J Veale (2), ² Ursula Fearon (2), ^{1,2}

Methodology

Bioinformatic

Functional

Seahorse

Metabolic characterisation of RA patient synovial tissue fibroblasts following treatment with IL-1 β and TGF- β .

Flow cytometry

Flow cytometric analysis of synovial tissue fibroblast activation and adhesion markers.

ELISA

Detection of fibroblast IL-6 in response to IL-1 β and TGF- β . .

Microscopy

TMRN staining of fibroblast mitochondria and assessment of mitochondrial size and aspect ratio

Cellular landscape of RA and PsA

Synovial T cell and macrophage derived ligands drive the transcriptional profile of enriched in RA FAP⁺THY1⁺ fibroblasts

IL-1β and TGF-β synergy drives the activation and metabolism of synovial fibroblasts

Dysregulated Macrophage Plasticity Promotes Progression of Inflammation in Patients with Rheumatoid Arthritis.

PhD Candidate Karina Kulakova

- CD68+ cells correlate with synovial inflammation.
- MertK macrophages correlate with remission.
- CX3CR1 Macrophages form a protective barrier in healthy joints.

Kulakova et al., Cells, 2024

scRNAseq of patient with RA and HC synovial tissue biopsies.

Kulakova et al., in preparation

In vitro macrophage polarisation.

Kulakova et al., in preparation

HC and patient with RA Macrophage Polarisation Profile

Increased IRF4 and costimulatory capacity by patient with RA macrophages • HC • RA

Inflammatory profile of macrophage subsets

Altered Metabolic Profile of Macrophage Subsets

Increased VEGF expression by patient with RA macrophages under hypoxic conditions

Kulakova et al., in preparation

Increased CD86 and IRF4 in response to hypoxia by patient with RA macrophages.

Osteoclasts in RA

- Osteoclasts are progenitors of macrophages
- RANKL promotes OC formation
- Involved in bone erosion and resorption

Osteoclast Differentiation

Different macrophage subsets give rise to distinct osteoclast populations

Regulates energy

metabolism

PGC1_β

Acknowledgements

Translational Immunology group

- PI Achilleas Floudas
- Dr. Konstantinos Panagiotidis
- Daphni Doulaptsi-Teeuwen
- Karina Kulakova
- Roozbeh Sanaei
- Patients who participated in the study.

Collaborators: Michael Freely, Paul Leonard, Tanya Levingstone.

Funders

Health Research Board

Dublin City University

Eoghan McCarthy Laura Durcan

Colm Kirby Catherine Hughes

Looking for motivated students to join the lab!

ACADEMIA

WWW RUDCOMICS CON

Not all polyfunctional T cells are the same.

- Investigation of macrophage polarisation and plasticity under hypoxic conditions that simulate the inflamed joint.
- Metabolic comparison of whole blood and monocyte profiles.
- Bioinformatic characterisation of Macrophage B cell interactions.

Elevated IL-6 and TNF-a by patient with RA M2 macrophage subsets.

PhD Candidate Karina Kulakova

Differential metabolic profile of macrophage subsets

DG+O (DGO)

FAO Aa

Acetyl-CoA

ATP/GTP

pg

Glucose

ATP.

DMSO

2DG+O

0

2DG

Puro

Puromycin

Oligomycin (O)

Acetyl-CoA Acetyl-CoA

ATP/GTP ATP/GTP

Glucose

ATP

FAO Aa

2-Deoxy-Glucose (DG)

Acetyl-CoA Acetyl-CoA

FAO Aa

ATP/GTP

Glucose

ATP/GTP

ATP

Control (Co)

FAO Aa

Acetyl-CoA Acetyl-CoA

ATP/GTP ATP/GTP

- -

Glucose

ATP.

Kulakova

RNAseq analysis of HC, IAR and RA synovial tissue samples.

HC = healthy control synovial tissue

IAR = arthralgia synovial tissue□ no signs of clinical inflammation

RA = RA patient synovial tissue

HC and patient with RA macrophage polarisation profile

Gene	Function in macrophages
CD206	Expressed by M2a, tissue repair and wound healing
IL-10R	Released by M2b
Arg1	M2c marker, collagen synthesis, fibrosis and cell proliferation
CD163	M2c local anti-inflammatory response by reducing haemoglobin levels
VEGF	M2d proangiogenic properties

The interplay between CD4+ T cells autophagy, metabolism and fitness in Rheumatoid arthritis.

PhD Candidate Daphni Doulaptsi-Teeuwen

- **Hypothesis:** T cell autophagy is potentially promoting T cell survival and fitness in the inflamed joint.
- Mitigation of cellular stress conditions.
- Promotion of proliferation under Hypoxia.

RA but not PsA patient synovial T cells maintain high expression of TGFB1

Differential EC cluster abundance and transcriptomic profile in RA and PsA

Multi-exponential decay fitting of Fluorescence lifetime imaging microscopy (FLIM)

Lakner, P. H., **Monaghan, M.G.**, Moller, Y., Olayioye, M.A., and Schenke-Layland, K. Scientific Reports, 7, 42730, 2017 Serra, V.V., Neto, **Neto, N.G.B**., Andrade S.M., and Costa, S.M.B. Langmuir, 33, 7680, 2017.

Nuno Neto, Monaghan lab Floudas et al., ARD, 2022a