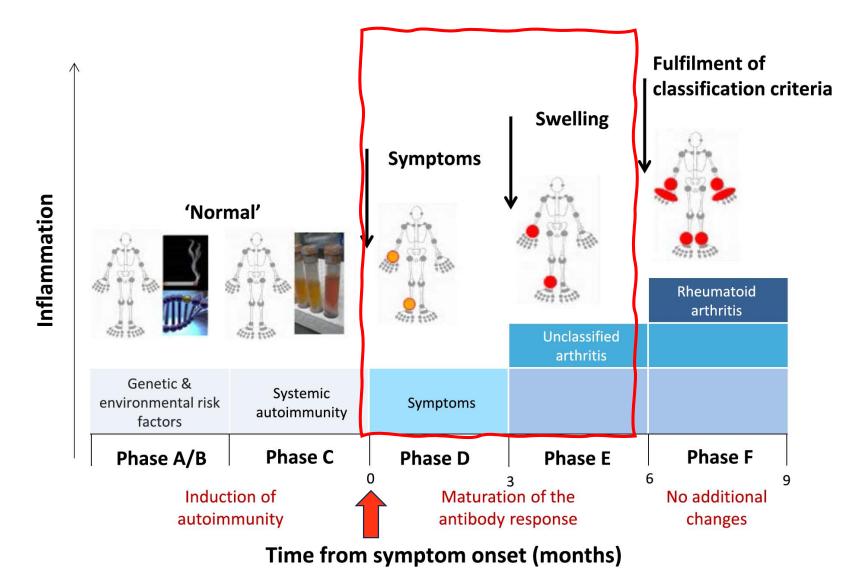
"Early Rheumatoid Arthritis: Is it too late?"

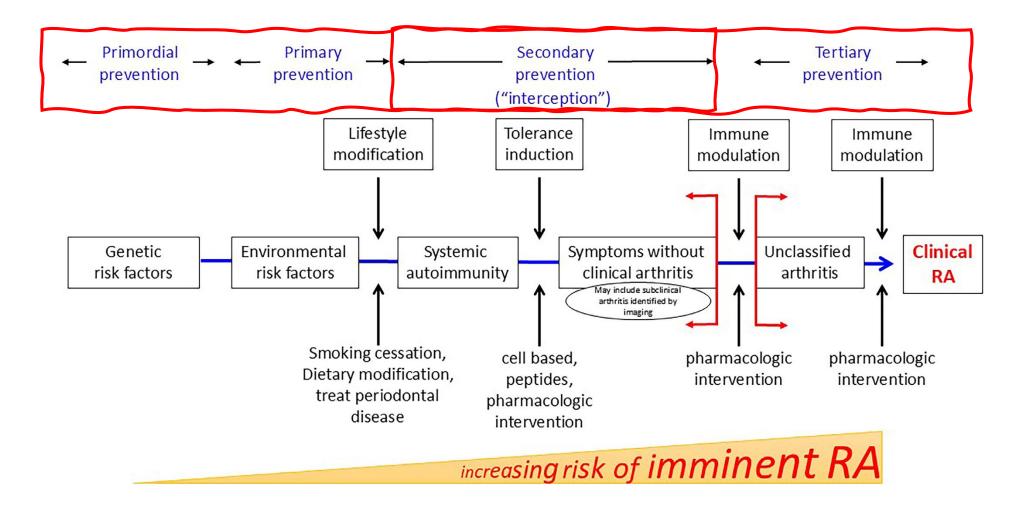
P Sidiropoulos University of Crete

sidiropp@uoc.gr <u>www.rheumatology-uoc.gr</u>

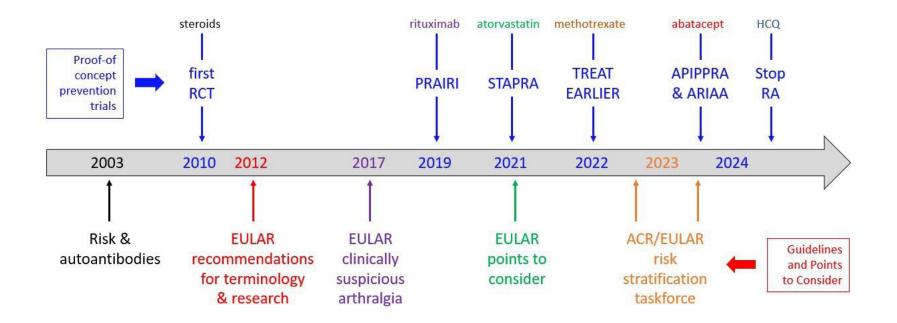
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΙΑΤΡΙΚΗ ΣΧΟΛΗ


Menu

Early arthritis cohorts data on:


 \checkmark Clinical data

- ✓ Cellular-molecular analysis
 - Synovium
 - Peripheral blood
- ✓ Comment perspectives for clinical correlations:
 - ➤ response to treatment
 - prognosis (bDMARDs use, damage)


RA has a chronic immunological process before symptoms development

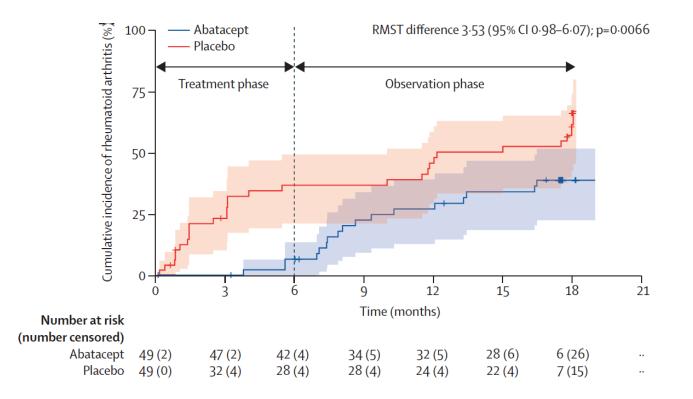
Therapeutic intervention has evolved: from early treatment to prevention

Preventive trials in Pre-RA Clinical trials in individuals at risk for future clinical RA

Clinical trials in individuals at risk for future clinical RA

What is the evidence?

• Negative studies: Limited courses of corticosteroids, atorvastatin and hydroxychloroquine do not alter incidence rates of clinical RA


However,

- Methotrexate has transient effects
- Rituximab delays clinical RA onset
- Abatacept delays clinical RA onset but does not fully prevent onset of RA after treatment cessation.

...a limited course of abatacept reduced:

- \checkmark Rates of progression to clinical RA within the trial period,
- $\checkmark~$ Multiple aspects of the symptom burden
- $\checkmark\,$ Subclinical joint inflammation.

Nevertheless, time-limited interventions were not sufficient to conclusively 'prevent' RA, indicating that challenges remain to further advance prevention in RA.

Overall 80% of early arthritis is classified as RA @ 10yrs

3 EU cohorts of "early arthritis" (ESPOIR, Rea	da Laidan EA	(\mathbf{C})	Latent class / 2010 criteria	RA	No RA		% Classification
SEO CONDITS OF Early artifitis (ESPOIR, Rea	ue, Leiden EP		Reade				
			AIPA	243	22	265	92
			MIPA	39	25	64	61
			OAUL	27	29	56	48
Box 1 Phenotypes of early arthritis	RA classific	ation	Total	309	76	385*	80
	>90%		ESPOIR				
\Rightarrow Autoimmune inflammatory polyarthritis (AIPA).		The rest is	AIPA	358	23	381	94
\Rightarrow Mild inflammatory polyarthritis (MIPA).	60-90%		MIPA	103	16	119	87
\Rightarrow Autoimmune inflammatory oligoarthritis of upper limbs (AIOAUL).	50-65%	Undifferentiated	OAUL	177	82	259	68
\Rightarrow Mild inflammatory oligoarthritis of upper limbs (MIOAUL).	20%	Arthritis	OALL	3	16	19	16
\Rightarrow Oligoarthritis of lower limbs (OALL).	2-15%		Total	641	137	778*	82
		-	EAC				
			AIPA	422	68	490	86
			MIPA	158	275	433	36
			AIOAUL	101	53	154	66
			MIOAUL	67	325	392	17
			OALL	7	402	409	2
			Total	755	1123	1878	40

RMD Open 2023;9:e003611

Table 4 Fulfilment of RA classification criteria across latent

Phenotypic transitions @ 10yrs

Polyarthritis hands: 100% stable phenotype irrespective of labs Olygoarthritis of hands: <30% transition to polyarthritis Lower limbs arthritis: stable

Table 5 Latent transition analysis in ESPOIR (10 years) and EAC (1 year)						
Baseline / Follow-up	AIPA	MIPA	OAUL	AIOAUL	MIOAUL	OALL
ESPOIR (N=504)						
AIPA	100	0	0	NA	NA	NE
MIPA	0	100	0	NA	NA	NE
OAUL	21.0	10.2	68.7	NA	NA	NE
OALL	NE	NE	NE	NA	NA	NE
EAC (N=1261)						
AIPA	100	0	NA	0	0	0
MIPA	0	100	NA	0	0	0
AIOAUL	14.2	0	NA	85.8		0
MIOAUL	0	2.9	NA	0	97.1	0
OALL	0.3	1.0	NA	0.3	6.6	91.7

Values come from LTA models with full invariance and are transition probabilities across classes from the baseline to the follow-up visit (10 years in ESPOIR and 1 year in EAC).

AIOAUL, autoimmune inflammatory OAUL; AIPA, autoimmune inflammatory polyarthritis; EAC, early arthritis clinic; ESPOIR, Etude et Suivi des Polyarthrites Indifférenciées Récentes; LTA, latent transition analysis; MIOAUL, mild inflammatory OAUL; MIPA, mild inflammatory polyarthritis; NA, not applicable (class not identified); NE, not possible to estimate; OALL, oligoarthritis of lower limbs; OAUL, oligoarthritis of upper limbs.

Overall improvement in function over the long term. Comparable disability between subgroups

- ✓ SF36 physical (PCS)
 - ✓ baseline 35–40 **■** 12 years: 43–51
- ✓ SF-36 mental (MCS)
 - ✓ baseline: 34–41 🖝 12 years: 40–48

✓ HAQ

✓ baseline: 0.7–1.2 🖝 12 years: 0.3-0.6

Comparable functional evolution between different phenotypes!!!

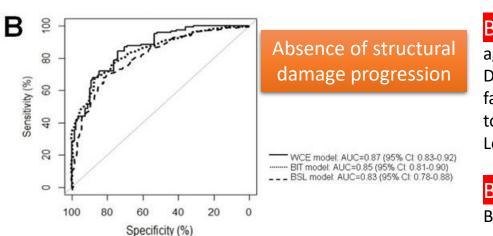
Table 6 Prognosis of EA phenotypes: impact of the different classes on outcomes over time							
	HAQ (0–3) β (95% Cl)*	SF36 PCS (0–100) β (95% CI)*	SF36 MCS (0–100) β (95% CI)*				
Reade		-					
MIPA vs AIPA	0.22 (0.10; 0.33)	NA	NA				
OAUL vs AIPA	0.04 (-0.17; 0.10)	NA	NA				
ESPOIR							
MIPA vs AIPA	0.01 (-0.1; 0.08)	0.20 (-1.46; 1.06)	0.21 (-1.75; 1.34)				
OAUL vs AIPA	0.07 (-0.13; -0.01)	0.45 (-0.50; 1.40)	0.74 (-1.95; 0.47)				
OALL vs AIPA	0.04 (-0.19; 0.10)	0.97 (-3.36; 1.42)	1.73 (–5.14; 1.69)				
EAC							
MIPA vs AIPA	0.09 (-0.18; 0.00)	NA	NA				
AIOAUL vs AIPA	0.01 (–0.11; 0.12)	NA	NA				
MIOAUL vs AIPA	0.08 (-0.16; 0.01)	NA	NA				
OALL vs AIPA	0.06 (-0.18; 0.05)	NA	NA				

Low incidence of radiological damage

Higher radiographic damage in polyarthritis/hands/autoAb+ve (AIPA)

Table 6 Prognosis of EA phenotypes: impact of the different classes on outcomes over time

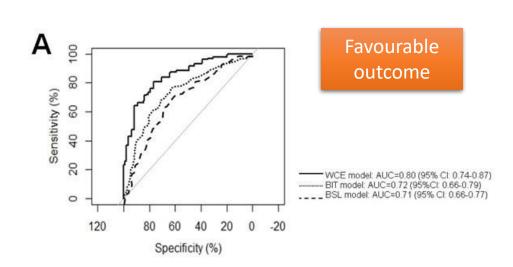
	SvdH (0–448) β (95% Cl)*
Reade	
MIPA vs AIPA	7.00 (-9.42; -4.52)
OAUL vs AIPA	2.73 (-5.94; 0.49)
ESPOIR	
MIPA vs AIPA	4.33 (-6.47; -2.18)
OAUL vs AIPA	0.79 (–3.05; 1.47)
OALL vs AIPA	4.48 (-6.80; -2.17)
EAC	
MIPA vs AIPA	18.5 (-25.2; -11.9)
AIOAUL vs AIPA	0.7 (–5.3; 6.7)
MIOAUL vs AIPA	6.3 (–15.1; 2.6)
OALL vs AIPA	6.8 (–19.2; 5.5)


Clinical interpretation:

the data suggest that EA patients presenting <u>without known</u> <u>prognostically unfavourable features (eg</u>, elevated APR and autoantibodies) <u>do not necessarily have better clinical outcomes</u> on the long-term as compared with those who have these markers at presentation

75% of early arthritis do not have damage @ 10 yrs (ESPOIR)

Damage Progression in early arthritis @ 10 years


- > 26.5% had structural damage progression (SDP)
- Mean progression in progressors of 34.4±22.8 (vSHS)

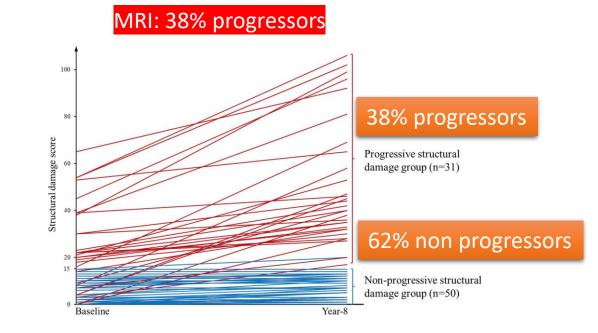
Baseline model (BSL) age at onset DAS28, HAQ, patient global fatigue total mean vSHS Low income

BIT model (BIT) BSL + csDMARD/bDMARD Y/N

Favourable outcome @ 10 years: 50% DAS28-ESR <2.6 and HAQ-DI <0.5

WCE model (WCE) BSL + csDMARD/bDMARD dose

RMD Open 2022;8:e002040

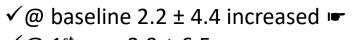

The majority 75% of RA patients do not have radiographic damage: 2 groups: progressors and not progressors

In a cohort of early RA @ 8 yrs: 25% with erosive disease on Xrays and 38% on MRI

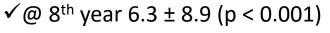
Radiographic structural damage (SHS score) "progressed":

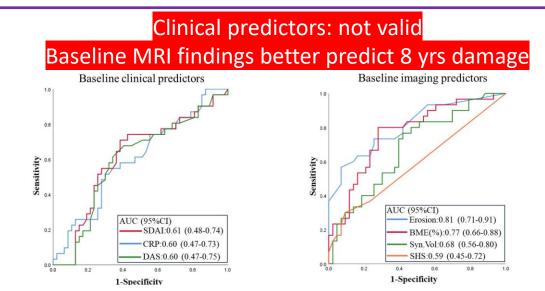
@ baseline, 93% (75/81) had none/mild radiographic damage
@ year-8, 75% (61/81) still had none or mild damage.

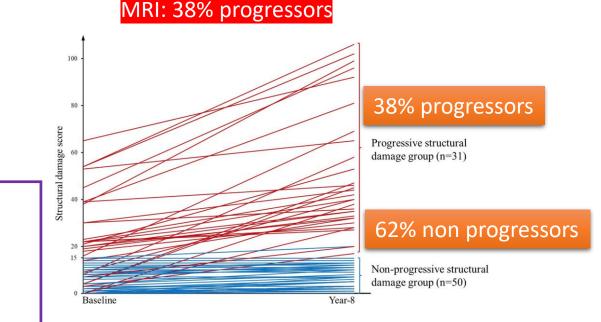
✓ @ baseline 2.2 ± 4.4 increased ■
 ✓ @ 1st year 3.9 ± 6.5 ■
 ✓ @ 8th year 6.3 ± 8.9 (p < 0.001)



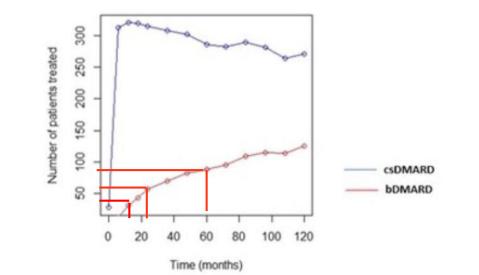
The majority 75% of RA patients do not have radiographic damage: 2 groups: progressors and not progressors


In a cohort of early RA @ 8 yrs: 25% with erosive disease on Xrays and 38% on MRI


Radiographic structural damage (SHS score) "progressed":

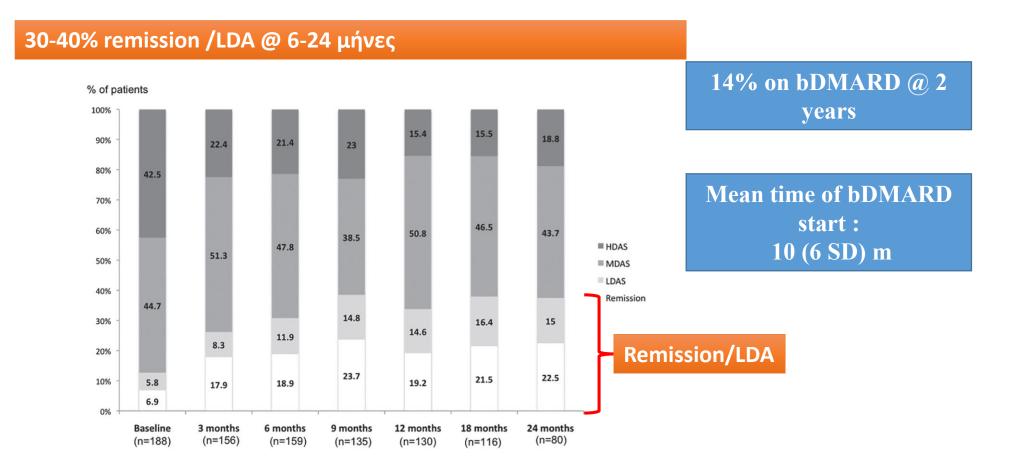

@ baseline, 93% (75/81) had none/mild radiographic damage
@ year-8, 75% (61/81) still had none or mild damage.

✓ @ 1st year 3.9 ± 6.5 ■



Wu et al. European Radiology, 2025

А


bDMARDs in early RA cohorts: do we treat early enough?

8% @1yr 🖝 14% @2yrs 🖝 21% @5yrs

	MO	M6	M12	M18	M24	M36	M48	M60	M72	M84	M96	M108	M120
	28	312	320	319	315	308	302	286	282	289	281	264	271
csDMARD	(6.7%)	(74.6%)	(76.6%)	(76.3%)	(75.4%)	(73.7%)	(72.3%)	(68.4%)	(67.4%)	(69.1%)	(67.2%)	(63.2%)	(64.8%)
bDMARD	0	12	32	44	57	70	83	89	96	109	152	114	125
DUMARD	(0.0%)	(2.9%)	(7.7%)	(10.5%)	(13.6%)	(16.8%)	(19.9%)	(21.3%)	(23.0%)	(26.1%)	(27.5%)	(27.3%)	(29.9%)

Early arthritis clinic – University Hospital of Heraklion : @ years prospective follow-up:

Fanouriakis A et al. Clin Exp Rheumatol. 2018;36(5):806

Early arthritis clinic – University Hospital of Heraklion : @ years prospective follow-up:

Increased HAD @baseline and high DAS28 @ 6 months predict 2 years outcome:

Variable	DAS28 >5.1 at 2 years		HAQ >1	at 2 years	Start of biologic DMARD		
	Crude OR (95% CI)	Adjusted OR (95% CI)	Crude OR (95% CI)	Adjusted OR (95% CI)	Crude OR (95% CI)	Adjusted OR (95% CI)	
Duration of symptoms (weeks)	1.00 (1.00-1.01)		1.06 (1.00-1.01)	1.00 (1.00-1.01)	1.00 (1.00-1.01)	1.00 (1.00-1.01)	
Baseline DAS28	2.13 (1.18-3.86)		1.19 (0.82-1.72)		1.30 (0.95-1.76)		
Baseline HAQ	4.85 (1.31-17.99)	2.85 (0.69-11.76)	11.27 (3.24-39.18)	12.63 (2.67-59.78)	2.25 (1.09-4.65)	2.12 (0.77-5.80)	
Baseline CRP	0.66 (0.29-1.52)		0.67 (0.37-1.21)		0.78 (0.55-1.11)		
Baseline ESR	0.99 (0.97-1.02)		0.98 (0.95-1.01)		0.98 (0.95-1.00)	0.95 (0.90-0.99)	
RF (+)	3.33 (0.67-16.47)		1.21 (0.22-6.57)		2.45 (0.84-7.10)	3.71 (0.70-19.82)	
Anti-CCP(+)	0.87 (0.16-4.61)		0.25 (0.03-2.08)		1.85 (0.65-5.23)		
DAS28 at 3 months	2.41 (1.23-4.74)	2.62 (1.20-5.72)	2.26 (1.33-3.82)	2.31 (1.14-4.71)	2.10 (1.41-3.13)	2.22 (1.36-3.62)	
HAQ at 3 months	3.72 (1.15-11.97)		3.90 (1.45-10.49)		1.95 (1.01-3.78)		

Main points (Clinical)

- Pre RA phase: we need better predictors to identify high-risk individuals for RA progression
- Early RA or Undifferentiated arthritis:
 - Mostly permanent, when in hands mostly RA
 - Prognosis comparable between phenotypes
 - Phenotype/labs do not predict outcome
- Only 25-30% @ 10 yrs has damage (Rx), but function is limited!

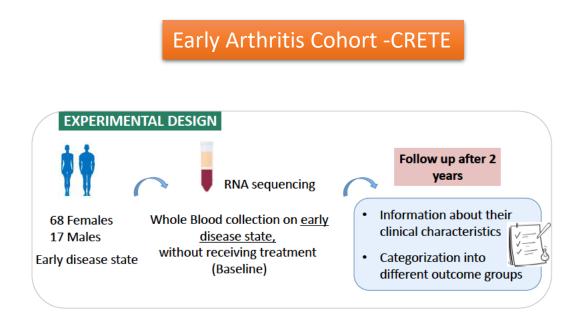
High-throughput technologies in early arthritis cohorts: Detailed molecular taxonomy reveals novel pathogenetic pathways and therapeutic targets

Tissue:

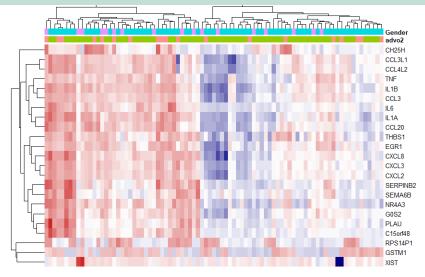
✓ Synovium✓ Peripheral blood

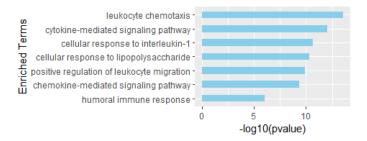
Methodology:

- ✓ RNAseq
 ✓ Single cell RNA analysis
- ✓ CyTOF.....

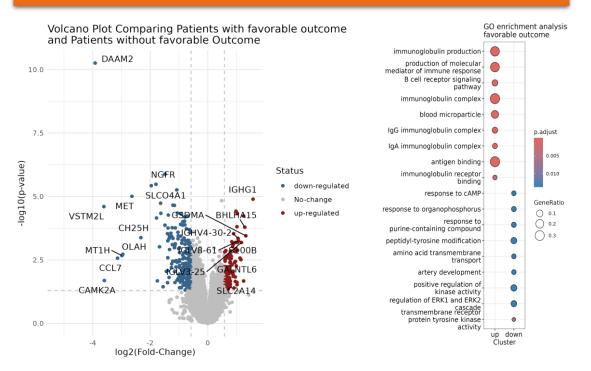

Current

- Autoantibodies
- Clinical imaging
- Clinical lab testing: complement levels and split products
- Soluble mediators: cytokines, chemokines, and solub receptors
- Transcriptomics: molecular signatures
- Genetics: disease-associated variants
- Immunophenotyping: flow cytometry
- Tissue histology


Emerging


- Genetics: genetic load, polygenic risk scores, extended HLA haplotypes
- Transcriptomics: cell-specific expression/signatures (scRNAseq)
- Immunophenotyping: single-cell proteomics (CyTOF), proteogenomics (CITE-seq), repertoire immunomics
- Perturbomics (multi-omic evaluation after stimulation or other perturbation conditions)
- Spatial tissue analytics: multiplex tissue imaging (CODEX, serial IHC)
- Imaging mass cytometry (Hyperion, IonPath)
- Epigenomics (sorted cell and single cell): DNA methylation, histone modification, chromatin conformation (ATAC-seq), protein–DNA interactions (CUT&RUN)
- Mass spectroscopy (biofluid) and imaging mass spectrometry (tissue): proteomics, metabolomics, lipidomics, and glycomics
- Environmental factors: microbiomics, exposomics

Early RA or UA have many upregulated genes associated to immune/inflammatory responses


a. Heatmap and **b**. functional enrichment analysis of the top 25 most variable genes.

Differentially expressed genes according to long-term outcome: genes associated to immune/inflammatory responses, metabolism, DNA damage repair

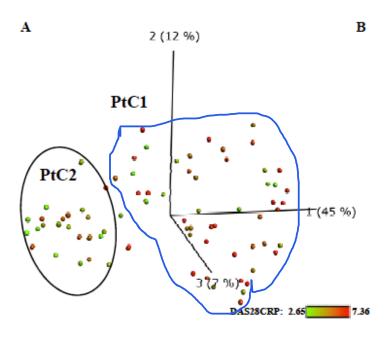
FavOut vs not FavOut: 137 genes were up-regulated and 356 down-regulated

Upregulated in patients with favorable outcome

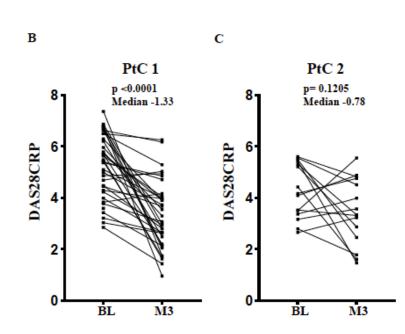
- DNA damage repair machinery (RAD5 and KIF18B),
- ✓ Metabolism/anti-inflammatory (*GLP1R*)
- Anti-angiogenic molecules (CRIP-2)
- Tregs homing in inflamed tissues (GPR15)
- ✓ B cell function (*MZB1*)

Down-regulated in patients with favorable outcome

- ✓ chemokines receptors (ACKR3 and CCRL2)
- chemokines (CCL20)
- Ipids with inflammatory action (CH25H, OLAH)
- ✓ NETosis-associated genes (CRYBG1 and SLC19A2)
- ✓ Innate immune response (PTX3, CSF3)
- ✓ inflammatory responses of DCs (NGFR)

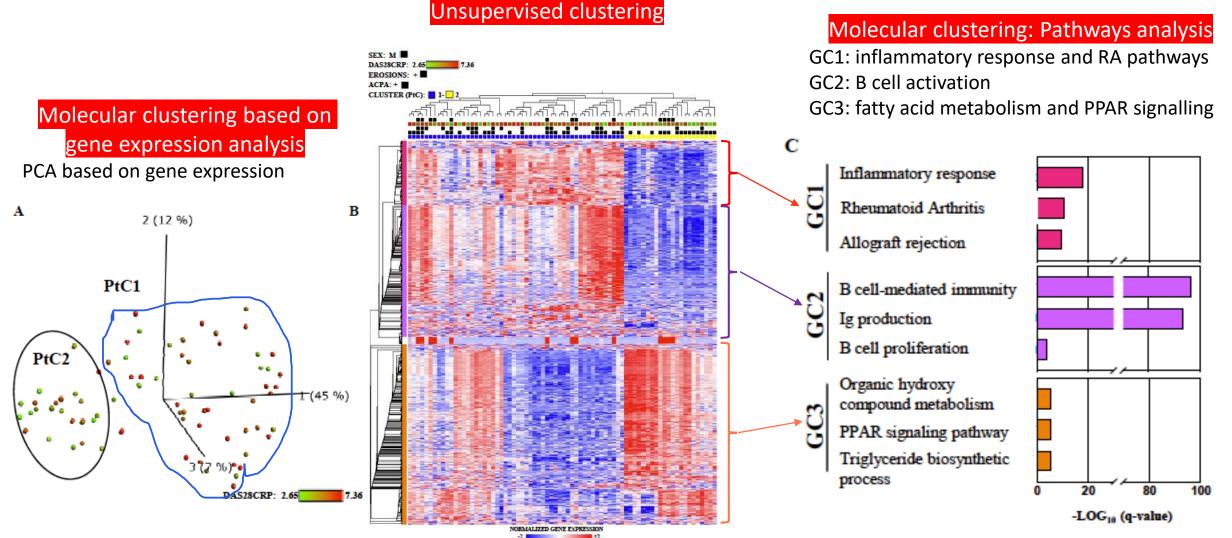

High-throughput technologies reveals molecular grouping corelated to phenotype

Molecular clustering based on gene expression analysis


PtC1 vs PtC2: higher inflammation and better responses @ 3 m to MTX

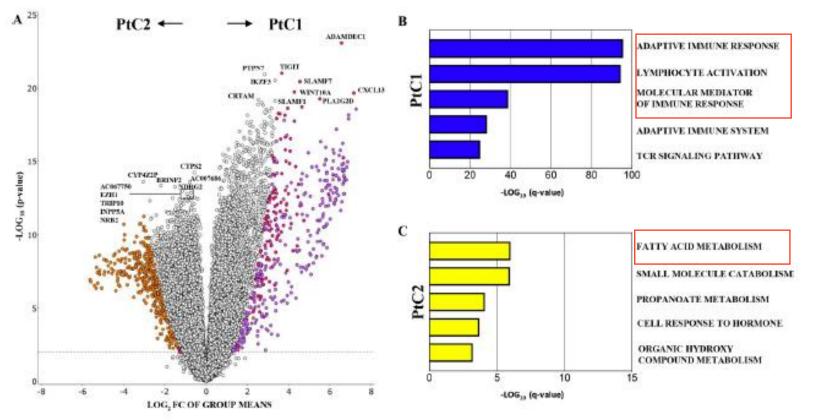
responses

Molecular clustering based on gene expression analysis PCA based on gene expression



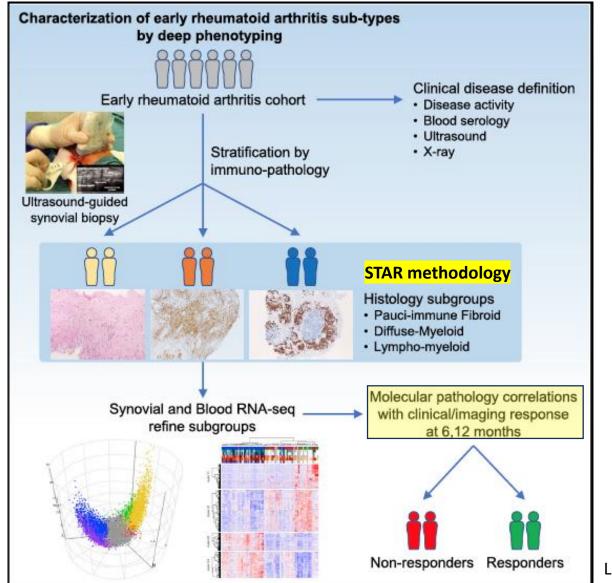
L		PtC1 (n=52)	PtC2 (n=22)	Uncorrected p-value
	DAS28CRP	5.56 [4.46-6.46]	4.09 [3.47-5.34]	0.0003
	SJC28 Q50	9.5 [5-13.75]	3 [1.75-6]	<0.0001
	TJC28 Q50	8.5 [4-14.75]	3.5 [2-7.5]	0.0073
	CRP (mg/dl)	2.3 [0.9-4.15]	0.85 [0.4-2.53]	0.0214
	PhGA	50 [35.75-60]	34 [23.5-50]	0.0121
	PtGA	70 [40-84.25]	56 [35-72.5]	0.1368
	HAQ	1.63 [1.13-2.1]	1.0 [0.57-1.75]	0.0346
	EROSIONS	34.6% (18/34)	10% (2/20)	0.0252
	ACPA and/or RF	61.5% (32/20)	72.7% (16/6)	0.43
	ACPA	50% (26/26)	72.7% (16/6)	0.08
	FEMALE	82.7% (43/9)	81.8% (18/4)	0.99
	AGE (years)	50.9 [41.4-66.5]	45.9 [33.4-57.3]	0.0542
	KNEE BIOPSY	65.4% (34/18)	95.5% (21/1)	0.0077
	RIN	7.85 [7.3-8.4]	7.65 [6.85-8.35]	0.2589
	MTX-TREATED (n=51)	PtC1 (n=36)	PtC2 (n=15)	Uncorrected p-value
	STEROID (any)*	52.4% (18/17)	20% (3/12)	0.0606
	STEROID (>7.5mg/d)*	8.6% (3/32)	13.3% (2/13)	0.6293

Triaille C, et al. Ann Rheum Dis 2023;82:1538


High-throughput technologies reveals molecular endotypes associated to inflammation and metabolism

Triaille C, et al. Ann Rheum Dis 2023;82:1538

High-throughput technologies reveals molecular endotypes associated to inflammation and metabolism


Supervised analysis of the differentially expressed genes between PtC1 vs PtC2

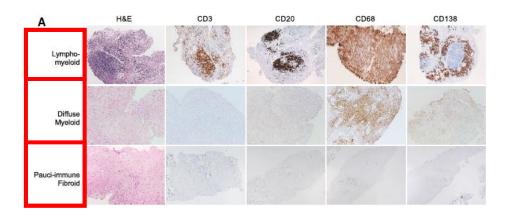
Conclusion

In this large series of early, untreated RA, we show that the synovial transcriptome closely mirrors clinical disease activity and correlates with synovial inflammation.

High-throughput technologies: Detailed molecular taxonomy reveals novel pathogenetic pathways and associates to phenotype

PEAC cohort: Early RA- treatment naive

- N=90 RA patients (from 355-individual PEAC cohort).
- Symptom duration: 5.6months
- DAS28- ESR:5.8 ± 1.3

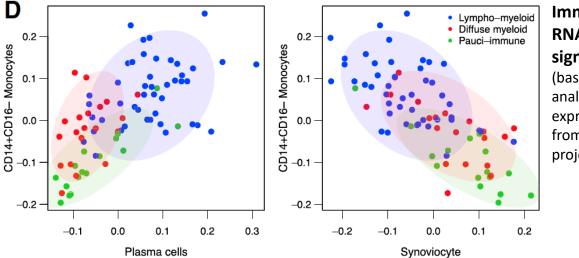

Lewis et al., 2019, Cell Reports 28, 2455

Early RA- MTX naive

Immune cell Gene expression analysis is a detailed analysis grouping patients based on cellular signatures and correlates to histological pathotypes

Immunohistochemistry of synovial biopsies:

- ✓ lympho-myeloid (50%)
- ✓ diffuse myeloid (20%)
- ✓ pauci-immune fibroid (20%)

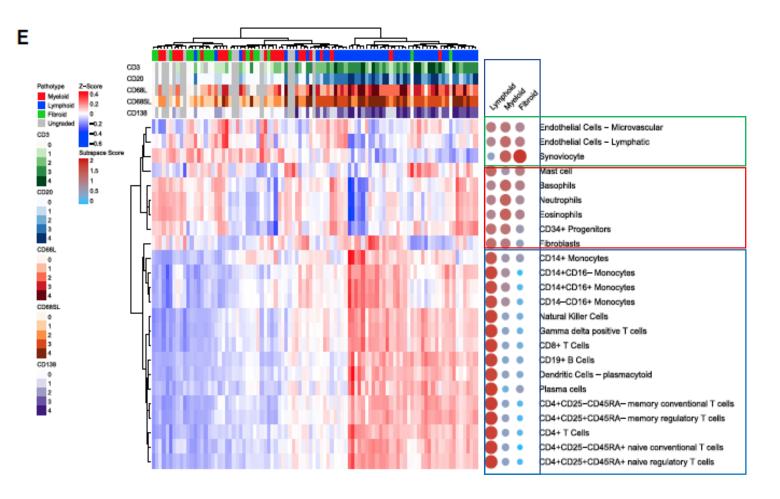


Synovial tissue heterogeneity represents a divergent continuum with:

- ✓ pauci-immune fibroid samples, low on all types of immuneinflammatory cells at one end
- ✓ **lympho-myeloid** at the other end with the full range of immuneinflammatory cells including macrophage, T, B, and plasma cell infiltration,
- ✓ diffuse-myeloid samples prevalent macrophage infiltration but largely lack T, B, and plasma cell infiltration

Immune cell gene signature

Plasma cell, B cell, monocyte, and synoviocyte **RNA-seq cell-specific modules** segregate the histologically defined pathotypes


Immune cell RNAseq signature (based on cap analysis gene expression (CAGE) from FANTOM5 project)

Early RA- MTX naive

Cell specific Gene expression analysis (RNA-seq) segregates patients based on cellular signatures and correlates to histological pathotypes

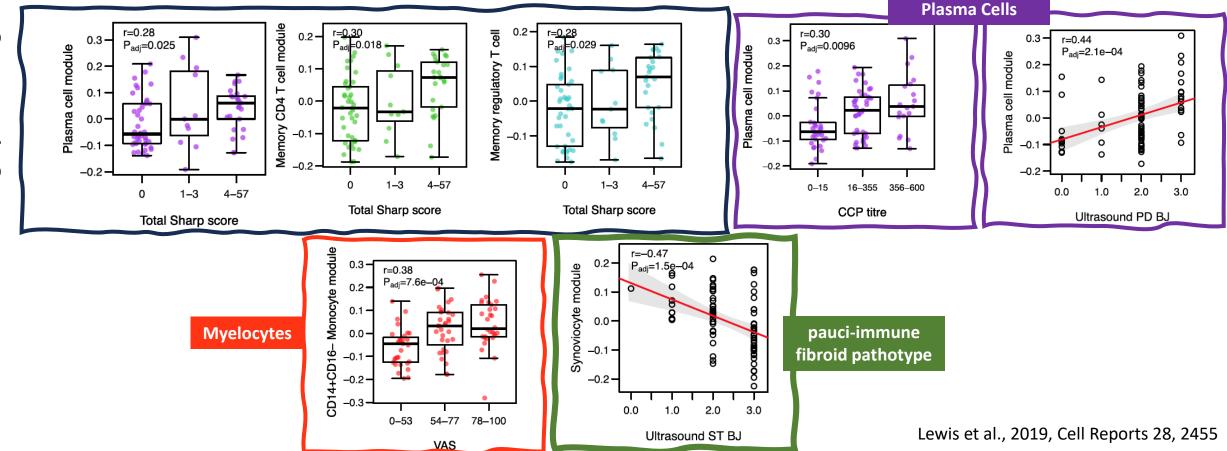
Synovium RNA Sequencing (cell specific gene signatures)

Correlates with Histological Pathotype in Early RA

Gene expression analysis offers a detailed analysis of synovial pathology and correlates to histological pathotypes

Synovial tissue heterogeneity represents a divergent continuum with:

- ✓ pauci-immune fibroid samples, low on all types of immune-inflammatory cells at one end
- ✓ **lympho-myeloid** at the other end with the full range of immune-inflammatory cells including macrophage, T, B, and plasma cell infiltration,
- ✓ diffuse-myeloid samples prevalent macrophage infiltration but largely lack T, B, and plasma cell infiltration

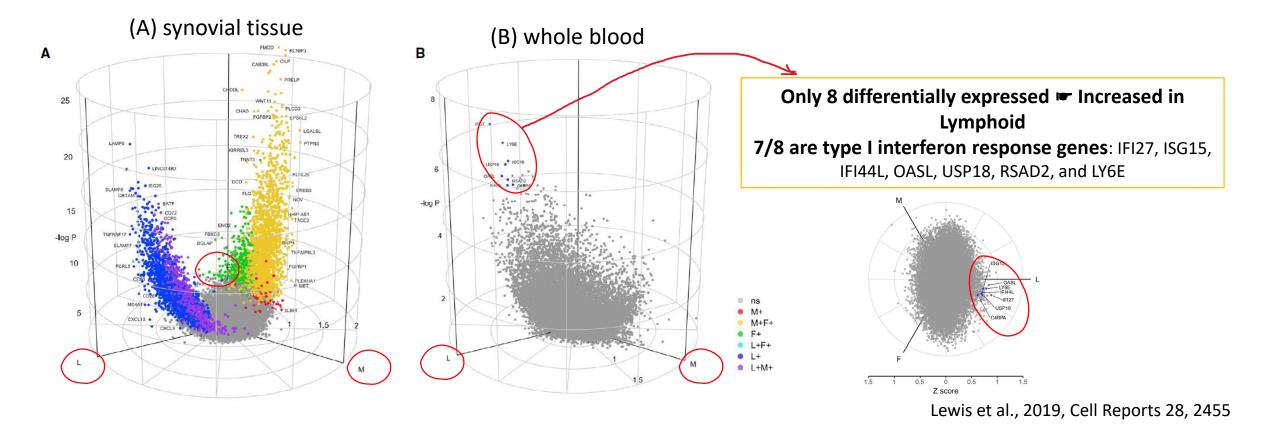


Early RA- MTX naive

Cell specific Gene expression analysis correlates to RA characteristics: immune cell infiltration corelates to damage, synovitis, seropositivity, VAS pain

Synovial tissue heterogeneity correlates with clinical characteristics:

- ✓ Several cell type modules (B- & T cells) showed significant correlation with radiographic damage,
- The plasma cell gene module was the strongest predictor of ultrasonographic synovial thickness AND was associated to CCP titres
- Inverse correlation between ultrasound scores and synoviocyte gene expression (pauci-immune fibroid pathotype)


"These data suggest that **infiltration of multiple immune cell types** associated with ectopic lymphoid responses in the synovial tissue may be **linked to more destructive disease from early on** in the course of RA."

Gene expression analysis RNAseq (clustering and PCA) and patients' classification:

the synovium gives clean delineation of the different histological subtypes while the blood transcriptome shows significantly less differentiation

Differentially expressed genes comparing RNA sequencing of (A) synovial tissue and (B) whole blood

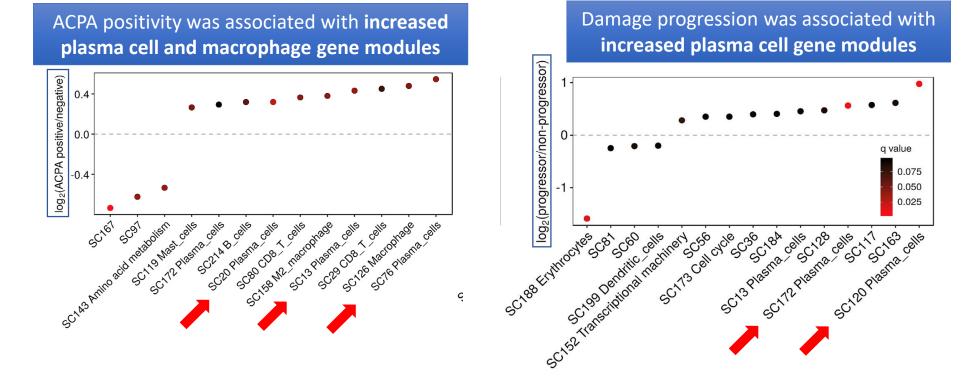
3,000 transcripts in synovium compared to only 8 differentially expressed (increased in L) in matched peripheral blood



Differentially Gene Expression is Associated with Clinical Parameters:

Synovium Plasma Cell Gene Expression :

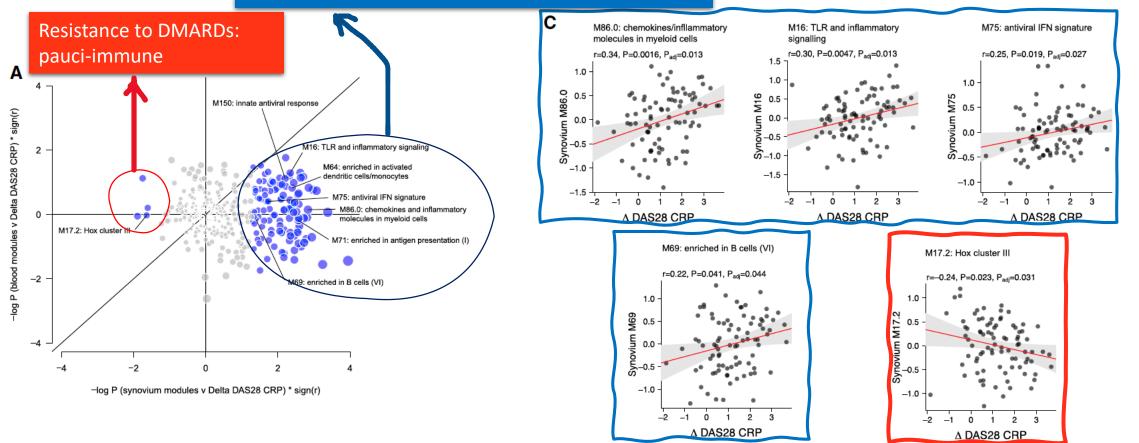
- Is Associated with Anti-CCP Antibody
- Predicts Join Damage at 12 Months


Differential gene expression in synovium RNA-seq revealed signatures associated with ACPA and progression

Clinical Correlations:

Plasma cell signatures are associated to ACPA and damage progression

RNA-seq-annotated WGCNA modular analysis showed that:

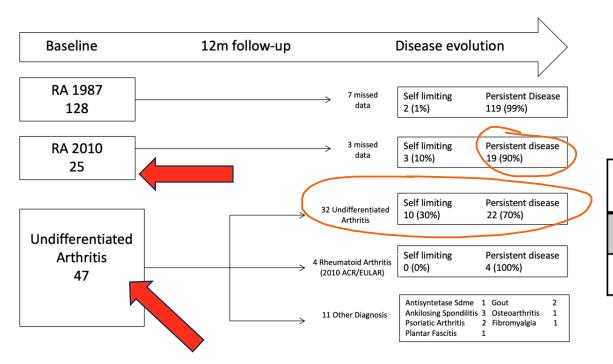

Lewis et al., 2019, Cell Reports 28, 2455

Early RA- MTX naive

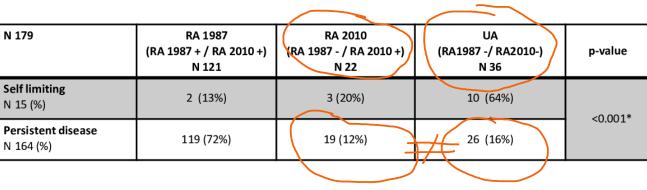
Baseline Synovium gene expression analysis (RNAseq) is more informative for clinical correlations than peripheral blood: clinical responses and radiographic progression

Synovial modules correlated with response to treatment @ 6 mo (ΔDAS28):

- ✓ type I IFN signature and antiviral modules
- ✓ monocyte and chemokine modules
- ✓ dendritic cell and antigen presentation
- ✓ B cell modules



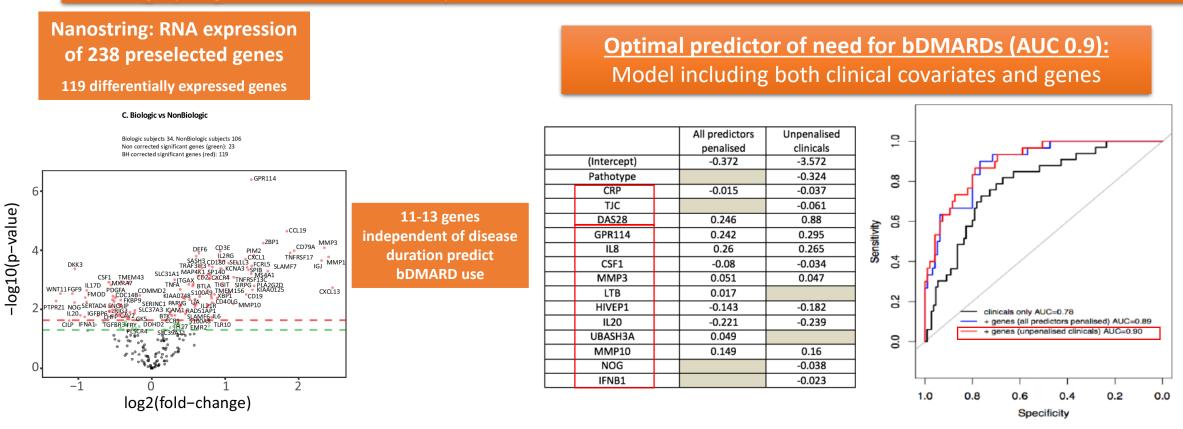
Synovium gene signature more informative than peripheral blood signature and histology


EULAR responses @ 6 months

- ✓ Blood gene expression or pathotype per se were not strong predictors of overall clinical response
- ✓ Molecular signatures associated to response
 - ✓ Modules for CD8+ T cells, mast cells, and TLR signaling were significantly increased in EULAR moderate and good responders at 6 months compared to nonresponders
 - ✓ whereas a CD55+ type 1 fibroblast module was lower in responders

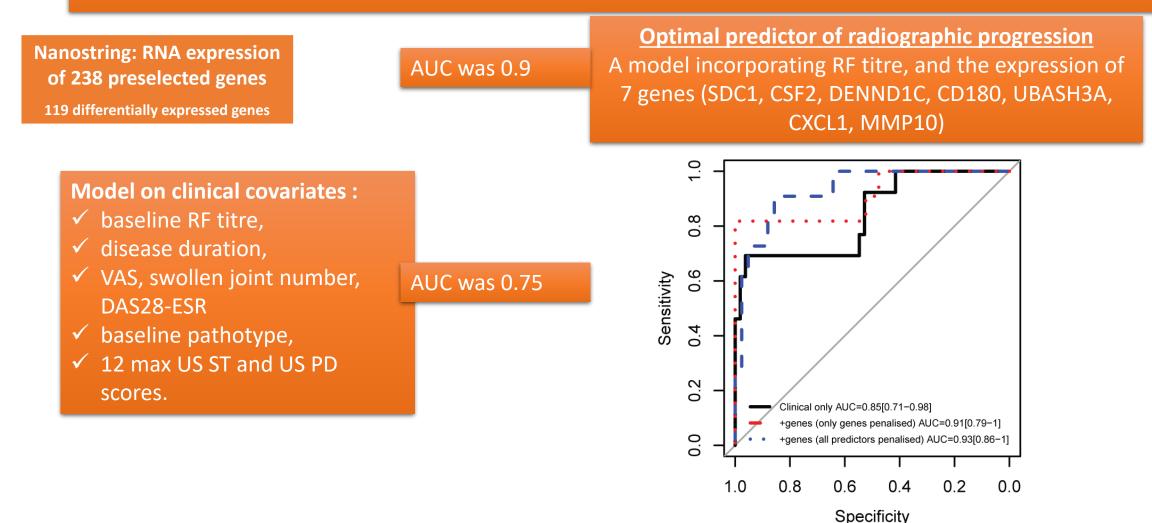
- ✓ <u>In early inflammatory arthritis (either RA or undifferentiated):</u>
 - Histology is comparable
 - Evolution is comparable

Between the RA2010 and UA group Comparable in synovitis score: CD3 +T, CD20 +B, CD68 +L or SL macrophage or CD138 +PCs !!!



1. Histology did NOT predicted responses

2. Disease duration was not associated to bDMARD use


3. Baseline Synovium gene expression analysis (nanostring) was more informative to predict response

/damage progression than clinical parameters

Synovium

Combined models based on gene expression and clinical characteristics predict better clinical outcomes (bDMARDs use % Rx progression)

Early RA/undifferentiated cohorts and synovial RNAseq analysis

Treat Early to Remission Irrespective of the Phenotype- Classification Ccriteria

- RNA sequence analysis advances the understanding of RA pathogenesis: different gene expression signatures relevant to immune-inflammatory pathways
- This is suggestive that early on disease onset IN BOTH RA AND UNDIFFERENTIATED disease divergent pathogenic pathways or activation disease states exist
- Molecular signatures better correlate to clinical outcomes (response, bDMARDs use, damage) than histology/clinical:

Promyeloid inflammatory synovial gene signatures correlated with clinical response to initial drug therapy Plasma cell genes identified a subgroup with progressive structural damage

What is missing?

A reliable, practical, easy to perform marker to support individual DMARD selection or long-term outcome characterization