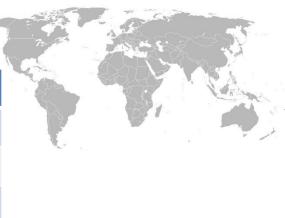


Αγκυλοποιητική Σπονδυλίτιδα


Γιάννης Σπερελάκης , Επικουρικός επιμελητής Ορθοπαιδικής Κλινική ΠΑΓΝΗ

Introduction

- Most prominent Spondyloarthtitis : 0.1 -1.4%
- Males x2 or x4 than females

Strong association AS with HLA-B27 , varied worldwide

Race	Prevelance rates of HLA-B27
African-American	50
Arabs	64
Latin Americans	71

HLA-B27

- group of related proteins that are encoded by the MHC
- 48 genetic loci ~ increased risk for AS
- HLA-B27 : serologic specificity

- HLA-B*27:(No.HLA locus)
- HLA-B*27 molecules ~ AS only differ at a few amino acid compared with HLA-B*27 not associated with AS
- HLA-B*27:06, HLA-B*27:09 assembled, dimerize & interact > HIA-B*27:05

Hypotheses on pathophysiological role of HLA-B*27

1."Arthritogenic peptide" hypothesis :

Altered HLA-B*27 amino acid sequence change the specificity for peptides derived from certain bacterial proteins

- Cross-reactivity with joints and/or entheses peptides
- Mediated by CD8+ T-cells

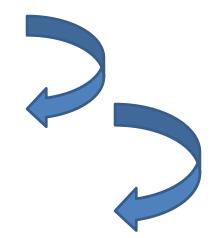
2. "ER stress model" :

Misfolded protein response in stress leads to autophagy & unfolded protein response (UPR)

Hypotheses on pathophysiological role of HLA-B*27

2. "ER stress model" Upregulation of UPR genes

T-cells , IL-17 , IL-23 , TNF-γ


3. "HLA-B*27 homodimer"

Free heavy chains of HLA-B*27 / (B*27)²

- No presentation of antigens
- Abnormal interaction with killer cells & leukocytes

Hypotheses on pathophysiological role of HLA-B*27

- 4. "Mucosal immunodeficiency hypothesis"
- HLA-B*27 fails to present bacterial peptides
- Invasion in the mucosa
- Upregulation IL-23 pathway

MHC genes beyond HLA-B*27

- HLA-A*02:01
- HLA-DRB1*01:03
- HLA-DPB1 alleles

Independent role of both MHC I & II alleles to AS

Genetic research conclusion

- TNF & IL-17 : pivotal for AS development
- Human Clinical trials : IL-17 / no IL-23
- Unclear HLA-B*27 causes inflammation
- No data for IL-17 role in bone remodeling
- Unknown mechanism linking inflammation & new pathological bone formation

AS development

- Axial skeleton
- Inflammatory back pain
- Peripheral arthritis
- Enthesopathy
- Anterior uveitis
- ✓ Typical 26 yo
- ✓ prevalence 0.1%-2%

General data

- Unknown etiology
- Strong genetic effect
- 15% 20 % (+) family history
- 80% 95% HLA-B*27 (+)
- No develop in all patients HLA-B*27 (+)

New York criteria

- Low back pain & stiffness >3 months ,improved by exercise ,no relieved in rest
- Restriction of motion of lumbar spine in both planes
- Restriction of chest expansion

Radiologic criteria

- □ Sacroiliitis > grade 2 bilaterally or
- □>Grade 2 or grade 3 unilaterally
- ✓ Diagnosis : radiologic criterion + at least 1 clinical

Grade 0	normal
Grade 1	suspicious changes
Grade 2	minimal definite changes: circumscribed areas with erosions or sclerosis with no changes of the sacroiliac joint space.
Grade 3	distinctive changes, sclerosis, change of joint space (decrease or widened), partial ankylosis

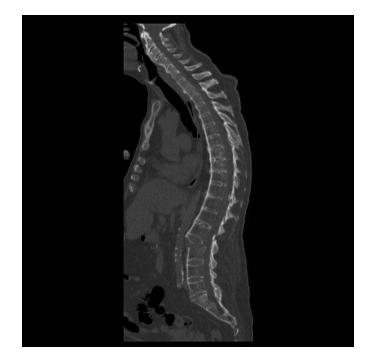
Grade 4 ankylosis

Altered vertebral bone composition

- 62 % AS patients have low bone mineral density
- Syndesmophyte formation & ligament ossification :

Spurious increase in BMD

- Dual BMD X-ray absorptiometry : falsy normal results
- AS had 2.9% annual bone loss
- AS also 5.3% annual loss of Ca in men > 50 yo

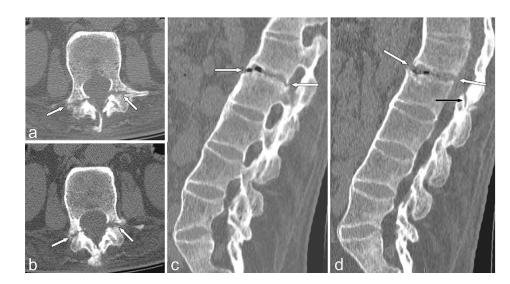

Osteoporosis in AS **T** rate of vertebral fractures

Etiology of osteoporosis in AS

- Unknown
- Multifactorial with phases of :
- \checkmark enhanced bone resoption or
- ✓ Reduced bone deposition at inflammatory sites
- \checkmark Inflammatory cytokine mediation and
- ✓ Altered hormonal influences
- In progressive AS demineralization of axial skeleton
 Increase rate of vertebral fractures

Altered Spine Biomechanics

- Paravertebral ossification bridge spine unit
- Flexibility loss
- Kyphotic
- Progression caudal to cranial
- ✓ Severe form : entire spine


AS Biomechanical alteration

Ligamentous ossification

- No extra support
- Loss of elasticity
- Mechanical function as long bones
- Rigid , fused , kyphotic deformity : long level arm
- High risk of low energy spinal fractures

AS in fractures

- Minor trauma
- Increased risk of multiple spinal fractures
- Usually occur through ossified disk and vertebral bodies
- Extension-distraction mechanism

AS fractures

✓ Opening of the anterior column

✓ Characteristic gap of vertebral bodies

Radiographic evaluation

- Acute-onset neck or back pain
- Change in posture

Fracture until proven otherwise

- 48% of cervical spine fracture in AS &
- 60% with MRI

✓ Routine use of CT scan in ANY patient with AS✓ Additional MRI use

MRI scan

- Evaluate 3-column fractures
- Often concomitant spinal injuries
- Detect epidural hematoma
- Increase diagnostic accuracy

- ✓ Koivikko & Koskinen : MRI detect 2 # than CT
 CT detect 6 # than MRI
- □ <u>CT & MRI</u> : strong detection of fracture in AS

Nonsurgical treatment

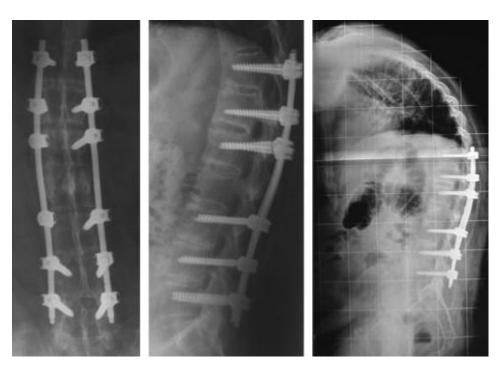
- High surgical risk
- Not ideal in patient with AS
- Orthoses usage complication from skin, respiratory
- Risk of dislocation and neurologic deficits
- Preexisting spinal deformity should fit to orthoses
- Shen & Samartzis : successful conservative trm at T5
 Highlight the <u>4th column concept</u>: rib-sternal complex
 For upper and mid thoracic region

Surgical treatment

- Prevent secondary deterioration of neurologic status
- Unstable fracture pattern
- Presence of epidural hematoma
- 59% after surgery no progression of neurologic deficit
- 27 % improvement of the deficit

Cervical spine surgical treatment

- 1. No anterior approach alone
- Chin-to-chest deformity narrows the surgical window
- 2. Posterior approach
- Multisegmented + autologous bone graft
- Combined posterior-anterior approach
 Higher morbidity rate
- Add a load-sharing device anterior to posterior construct


Thoracic & lumbar surgical treatment

- Posterior stabilization with <u>long constructs</u>:
- ✓ Recreation of alignment
- ✓ Confer stabilization of the injured segment
- \checkmark Accomplish decompression

Reduce stress and risk of implant pullout

Conclusion

- ✓ Long constructs 3 levels above and below fracture
- ✓ correct preexisting deformity

Complications

- Range from 50 % to 84 %
- Complications are :
- ✓ Postoperative wound infection
- ✓ Deep vein thrombosis
- ✓ Pneumonia
- ✓ Respiratory insufficiency[−]
- ✓ Epidural hematoma
- ✓ Aortic dissection

specific for AS population

Take home message

- ✓ Spinal fracture common & devastating in AS
- ✓ Increased fracture risk related to altered spine biomechanics and poor bone quality
- ✓ Radiographic evaluation with CT & MRI & for entire spine
- ✓ Management mainly surgical
- ✓ Surgical treatment typically posterior fixation at a minimum
- ✓ Suspicion of fracture in AS patients

Ευχαριστώ πολύ για την προσοχή σας