

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΕΛΓΙΑ Εδνικόν και Καποδιστριακόν Πανεπιστήμιον Αδηνών

Cytokine inhibitors in autoimmune diseases from basic science to translational application

George E Fragoulis

Rheumatology Registrar, "Laiko" Hospital

Honorary Research Fellow, Institute of Infection Immunity & Inflammation, University of Glasgow

Heraklion November 2019

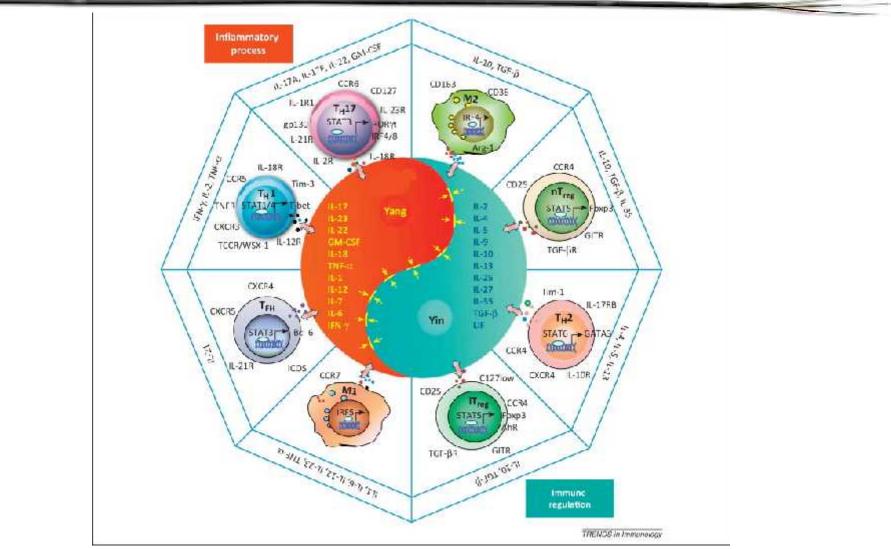
Outline

- Introduction The Complexity of Immune system
- The Players Drugs targeting cytokines and their receptors
- ✤ The IL-23/-17 axis
- → IL-1 & the inflammasome
- → IL-6
- Conclusion

Introduction Cytokines - properties

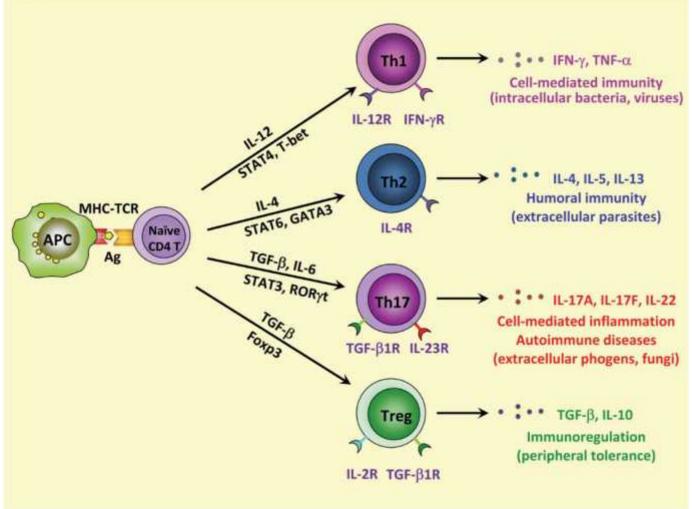
- Cytokines
 - are key effectors in the pathogenesis of several human ARDs
 - Single-cytokine targeting useful in several ARDs

✓ e.g RA, PsA, GCA and others


- mediate a wide variety of immunologic actions
 - Pleiotropic functions
 - Synergistic interactions
- Render them intriguing therapeutic targets
- But also could be associate with side-effects

Introduction

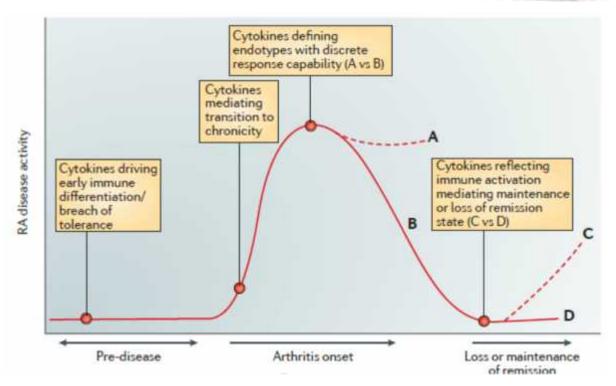
What do we need from cytokine-based treatment?


- Control of inflammation
- Protection of targeted tissues (e.g bone and cartilage)
- Promoting the re-establishment of immune tolerance
- Healing of previously damaged tissues
- Amelioration of associated co-morbidities
- Preservation of host immune capability
 - to avoid profound immune suppression and

The complexity of Immune System

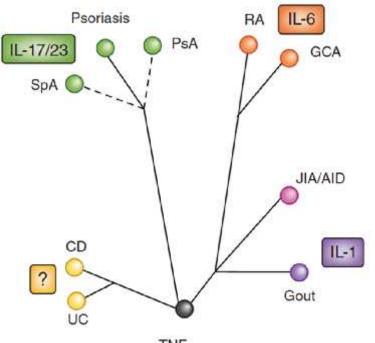
Liu et al. Trends in Immun 2012

Cytokines Different T cell subsets



Leung et al CMI 2010

Cytokines

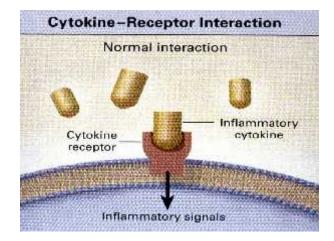

Diverse drive according to disease stage?

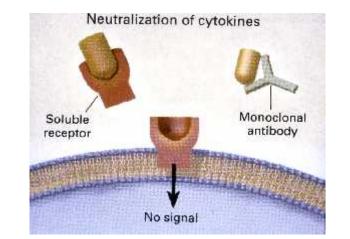
- Groups of cytokines (e.g. IL6, IL-21, IL-23, IL-17) likely
 - drive adaptive immune activation/differentiation
 - loss of tolerance
 - in preclinical or early arthritis, whereas
- distinct profiles might dominate
 - the transition to chronicity or the maintenance of established disease (e.g. TNF, IL-6),

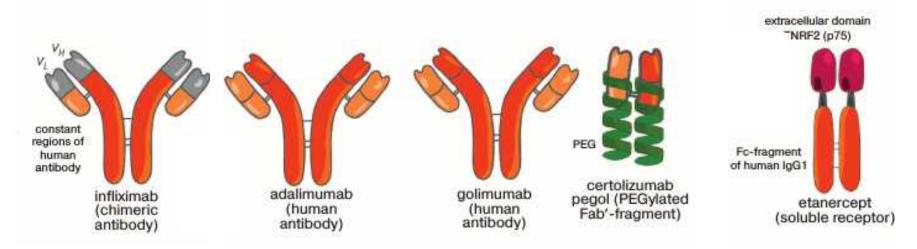
Cytokine profiles could yield new biomarker profiles, or novel insights into the rational, 'pathogenesis stage-dependent' application of cytokine-targeting therapeutics

Cytokines Different drivers according to disease type?

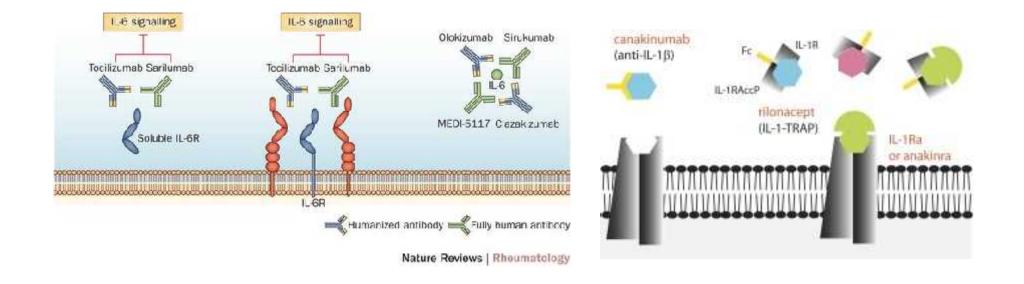
TNFα

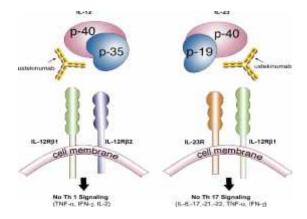

	_	Cytokine targets					
Chronic inflammatory disease	TNF	IL-6R	IL-1	L-12/ L-23	IL-17A	IL-23	
Rheumatoid arthritis	0	0	0	\bigcirc	\bigcirc	0	
Autoinflammatory disease/sJIA	0	0	0				
Crohn's disease	0		\Box	0	Θ	0	
Ulcerative colitis	0	\Box		0	0	\bigcirc	
Psoriasis	0	\Box		0	0	0	
Psoriatic arthritis	0	0		\bigcirc		\bigcirc	
Ankylosing spondylitis/ axSpA	0	0	0	\bigcirc	0	0	
Multiple sclerosis	0			\Box			


Schett G et al. Nat Med 2013 Bravo A et al Nat Rev Rheum 2019

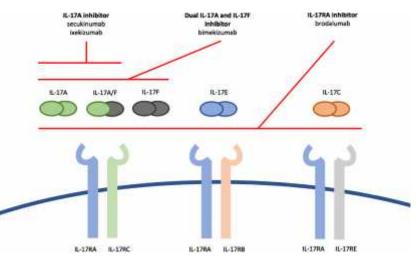

Outline

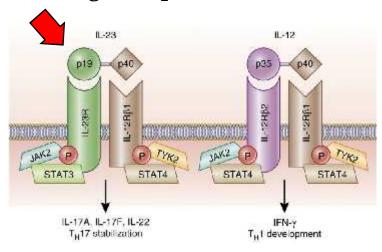
- Introduction The Complexity of Immune system
- The Players Drugs targeting cytokines and their receptors
- ✤ The IL-23/-17 axis
- IL-1 & the inflammasome
- → IL-6
- Conclusion


The Players The TNF inhibitors


The Players Against IL-6 / IL-1

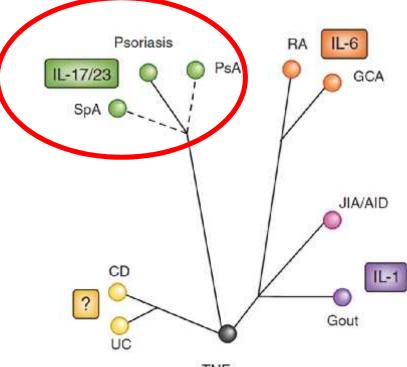
Tanaka T et al, CSHBP 2014 Doherty T et al, JLB 2011


The Players Against IL-23 / IL-17


against p40 subunit IL-12/-23

against p19 subunit IL-23

<u>against IL-17</u>



Risankizumab Guselkumab Tildrakizumab

> Dinarello CA et al. Nat Rev Rheum 2019 Koutruba N et al Ther Clin Risk Management 2010 Reis J et al Biodrugs 2019 Teng MWL et al Nat Med 2015

The IL-23/-17 axis

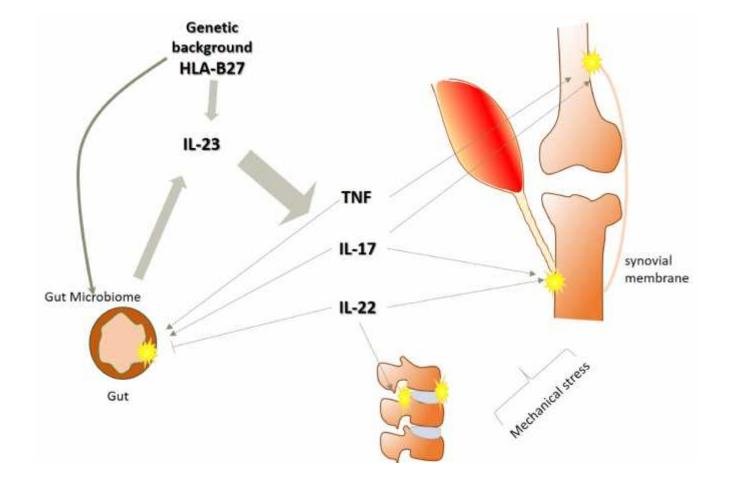
 $\mathsf{TNF}\alpha$

Psoriatic Arthritis Patterns of disease

- Heterogeneous disease
 - Asymmetric oligoarthritis
 - Predominantly distal interphalangeal disease
 - Peripheral polyarthritis (rheumatoid-like)
 - Dominant axial disease (sacroiliitis/spondylitis)
 - "Arthritis mutilans" (a mutilating type of disease digits)

Psoriatic Arthritis Common Findings

- Other common findings
 - Enthesitis (entheses: tendon/ligament attaches to the bone)
 - Dactylitis sausage-shaped swelling of digits (40-50%)
 - Nail involvement

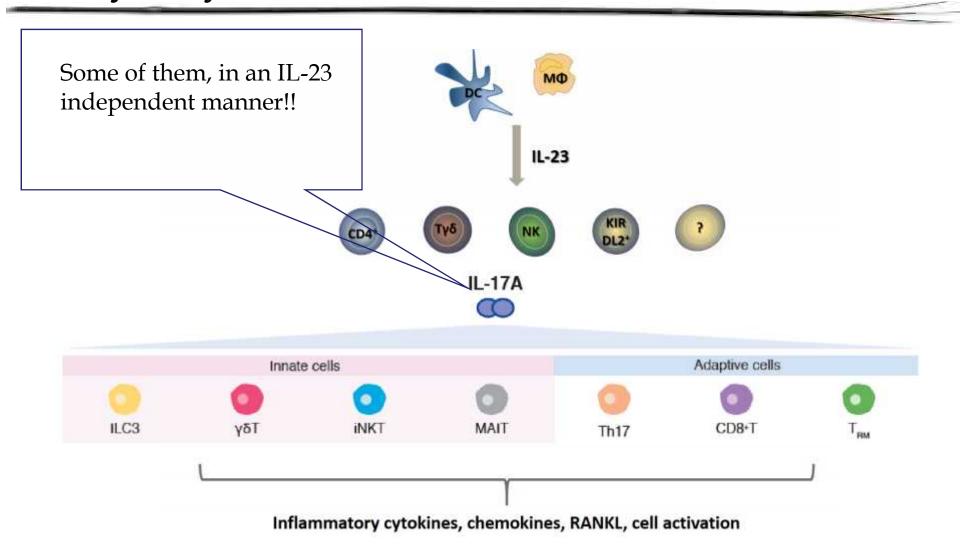

www.cri-net.com

Psoriatic Arthritis....

Or Psoriatic disease


- Psoriatic disease
 - ♦ 爺 risk for IBD
 - 介 risk for Uveitis
 - Metabolic component
 - Diabetes
 - Obesity
 - ✓ Related to development of PsA and worsening psoriasis
 - Hypertension/CVD
 - ✓ Increased risk for CVD, not totally explained by classical risk factors
 - Psychological dysfunction
 - Inflammatory cytokines (e.g TNF) could be related to depression

Anti-23/-12, Anti-IL-17 Why they work??

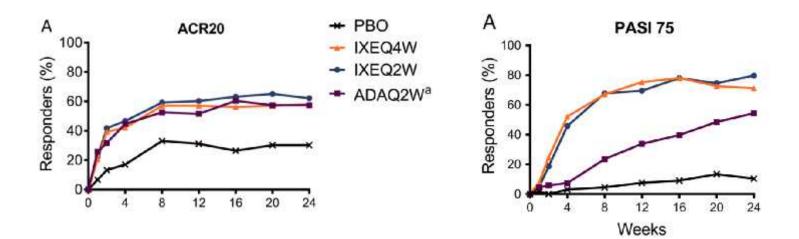


Psoriatic Arthritis

Pathogenesis

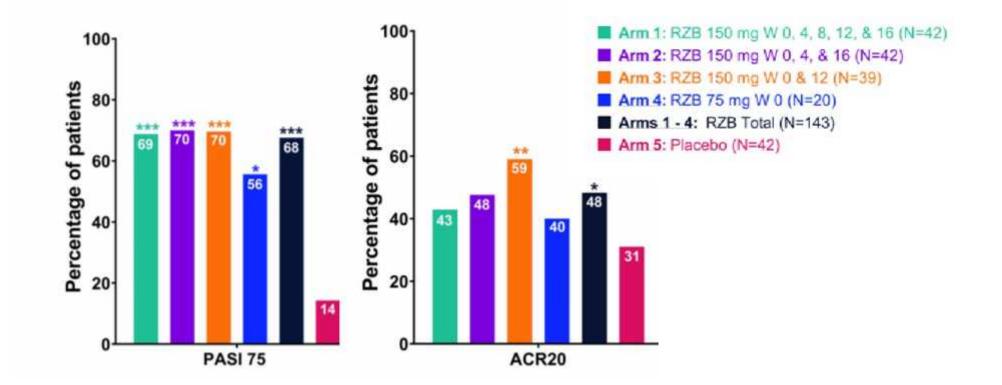
Anti-23/-12, Anti-IL-17 Why they work??

Treatment

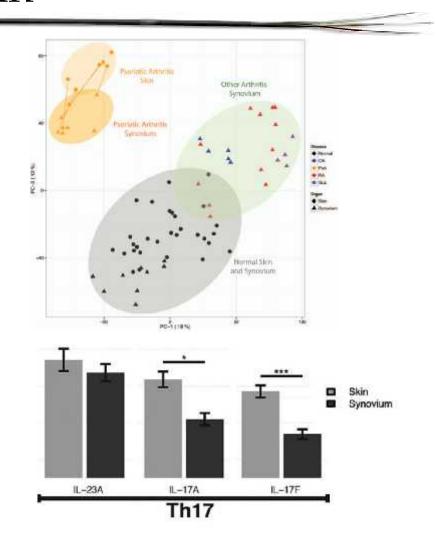

Biologics

Molecule	PASI 75	ACR 20	
	(at week 24)	(at week 24)	
Infliximab ²³	60%	54%	
(5 mg/kg at weeks 0, 2, 6, 14, and 22)	(1%)	(16%)	
Etanercept ²⁶	23%	59%*	
(25 mg twice weekly)	(3%)	(15%*)	
Adalimumab ²⁹	59%	57%	
(40 mg every 2 weeks)	(1%)	(15%)	
Golimumab ³²	56%	52%	
(50 mg every 4 weeks)	(1%)	(12%)	
Certolizumab pegol ³⁴	62%	64%	
(400 mg at weeks 0 and 2 and then 200 mg every 4 weeks)	(15%)	(24%)	
Ustekinumab ³⁶	57%	42%	
(45 mg at weeks 0 and 4 and then every	(11%)	(23%)	
2 weeks)	53.554 (S	0.87-000.80	
Secukinumab ⁴⁰	48%	51%	
(150 mg at weeks 0, 1, 2, 3, and 4 and then every 4 weeks)	(16%)	(15%)	

Ramiro S et al Ann Rheum Dis 2015 D'angelo S et al Open Access Rheum 2018


Θεραπεία Anti-IL-17

- SPIRIT -1
 - Phase III trial
 - Ixekizumab Vs Adalimumab Vs Placebo


Ramiro S et al Ann Rheum Dis 2015 Noisette A Hochberg MC, Psoriasis: Target & Ther, 2018 Mease P et al Ann Rheum Dis 2018

Treatment Anti-IL-23 (p19) (Risankizumab)

Psoriatic Arthritis synovial membrane Vs skin

- Δύσκολη μελέτη της
 ιστοπαθολογίας
- Similarities and differences
 - TNF pathway, VEGF, TGF-β1 and IL-6
 - More activated in synovial membrane
 - IL-23/-17 axis
 - More activated in skin

Treatment

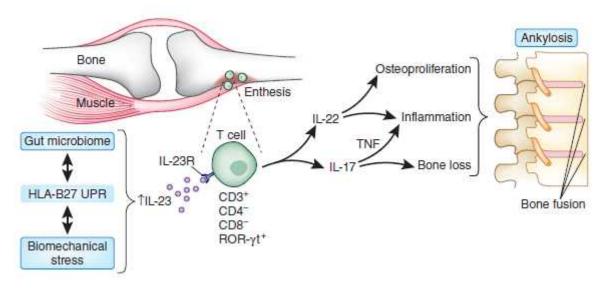
not one size fits all

- Skin
 - Anti-IL-23/-17 class > anti-TNF in PASI75 (network meta-analysis)
 - head-to-head in psoriasis
 - ✓ Ustekinumab, Ixekizumab >> Etanercept
 - ✓ Guselkumab > Adalimumab
 - ✓ Tildrakizumab > Etanercept
 - ✓ Secukinumab > Ustekinumab
 - ✓ Ixekizumab>Adalimumab (PsA)
 - ✓ Risankizumab > Ustekinumab ?

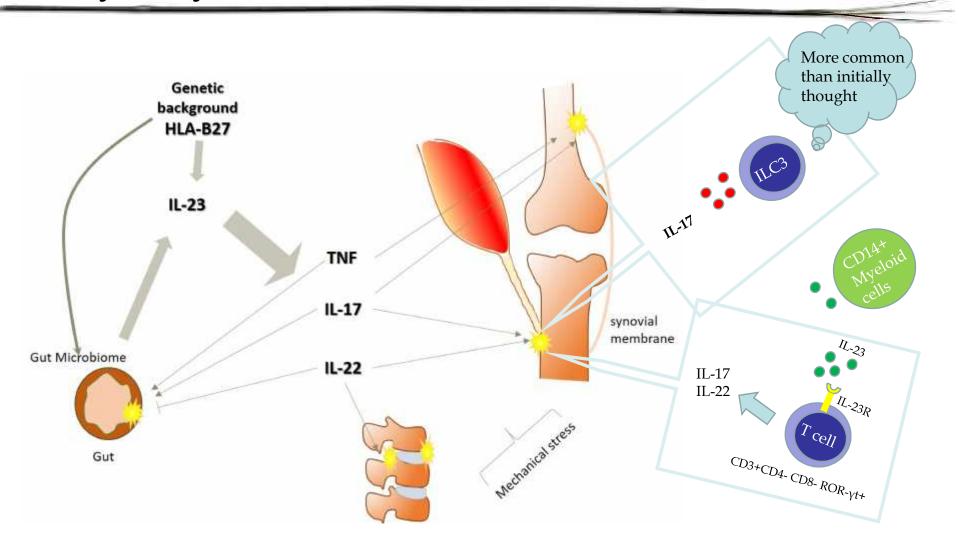
Gordon K et al Lancet 2018 ✓ Ixekizumab >(?) Secukinumab ? Reich K et al Lancet 2017 Lin VW et al Arch Derm 2012 Griffiths CE et al NEJM 2010 Griffiths CE et al Lancet 2015 Blauvelt et al J Am Acad Dermatol 2017 Paul J et al Blauvelt et al J Am Acad Dermatol 2018 Joints

Contradictory results

Strand V et al Rheumatol Ther 2017 Nash P et al Rheumatol Ther 2018 McInees IB et al J Comp Eff Res Paul et al Br J Derm 2018 Warren et al Br J Dermat 2018

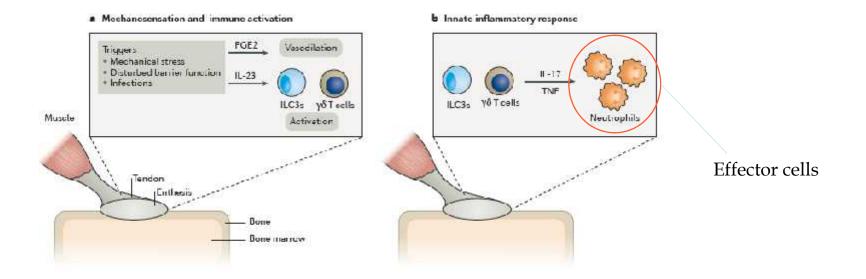

Psoriatic Arthritis Enthesitis

- Why enthesitis in PsA?
- Less resistance to mechanical stress? (analogy to Koebner)
- Mechanical stress
 - More often in lower limbs
 - Unloaded mice: less enthesitis


D'Agostino NA Clin Exp Rheum 2009 Schett G Nat Rev Rheum 2017 Jacques P Ann Rheum Dis 2013

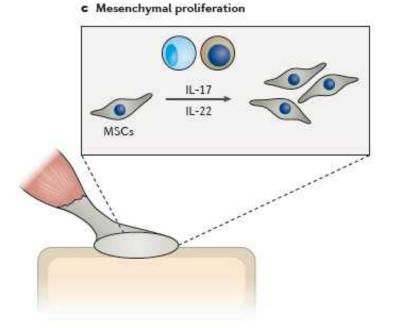
Psoriatic Arthritis Enthesitis

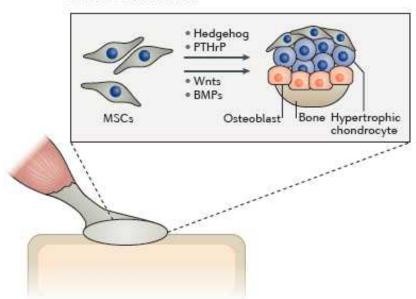
- Enthesis organ "synovio-entheseal concept"
 - bursae, tendon hseaths, fibrous tissue, fat pads, fasciae
- Can everything start from the entheses ??


Anti-23/-12, Anti-IL-17 Why they work??

(modif from) Siebert S, Fragoulis GE, McInnes IB EULAR online course 2016

Psoriatic Arthritis


Enthesitis



PGE2

- Response to mechanical stress
- Mesenchymal cells cox2 expression
- Induces IL-17 production

Psoriatic Arthritis Enthesitis

d New bone formation

Schett G et al Nat Rev Rheum 2017 Bridgewood C et al, ARD 2019

Enthesitis

Treatment

- NSAIDs
 - Μπορεί να είναι
 αποτελεσματικά (> αρθρίτιδα)
 - PGE2
 - DMARDs
 - Περιορισμένα δεδομένα
 - SSA: μη αποτελεσματική
 - MTX: ενδεχομένως

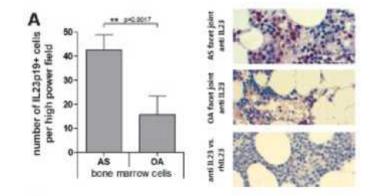
- 🔹 Βιολογικά
 - Anti-TNF
 - Αποτελεσματικοί
 - Anti-IL-23/Anti-IL-17
 - Αποτελεσματικοί
 - Ustekinumab > anti-TNF (ECLIPSA)

Orbai AM A et al J Rheum 2014 Rose S et al J Rheum 2014 Schafer P et al Cell Sign 2014 Sakkas LI et al Semin Arthr Rheum 2013 Araujo EJ Semin Arthr Rheum 2018

Psoriatic Arthritis

Axial Disease

- → cDMARDs
 - Not efficient
- Studies designed for PsA axial disease
 - are awaited
- First biologic
 - Anti-TNF
 - First choice ??
 - Secukinumab (anti-IL-17)
 - Good results
 - Approved for AS

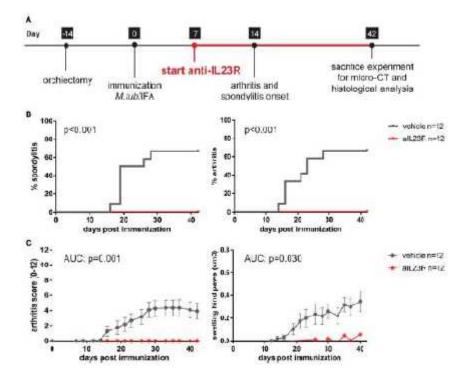

Kavanaugh A et al Ann Rheum Dis. 2016 Gossec L et al Ann Rheum Dis 2016 Poddubny et al Ann Rheum Dis 2013 Axial spondylartropahty IL-17 but not IL-23...

- anti-IL-17 works but not anti-IL-23 ??
- Ustekinumab
 - Good results in small open-label studies
 - phase III trials in AS & non-radiographic axSpA
 - Not achieved primary end-points
- Risankizumab
 - Did not reach primary endpoints in AS

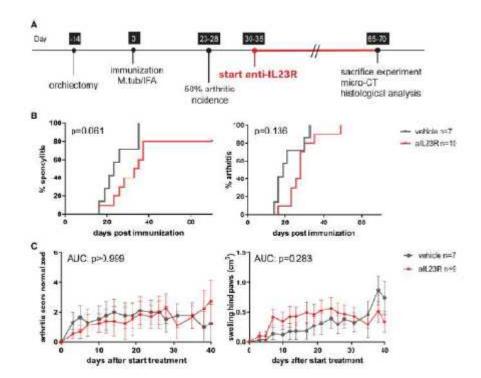
Baeten D et al Ann Rheum Dis. 2018 Siebert S et al Ann rheum Dis 2018 Axial spondylartropahty IL-17 but not IL-23...

- anti-IL-17 works but not anti-IL-23 ??
 - In peripheral blood of AS patients
 - î number of γδ T cells secreting
 IL-17 & expressing IL-23R

 - Possible IL-17 production independent of IL-23



Appel H et al Arthr & Rheum 2013 Siebert S et al Ann rheum Dis 2018 DG McGonagle et al ARD 2019


Initiation but not perpetuation of disease

Anti-IL-23R prevented initiation of spondylitis Anti-IL23R falled to suppress spondylitis and arthritis development in HLA-B27tg rats

IL-23

and arthritis in HLA-B27tg rats

van Tok MN, et al. Front Immunol.2018;9:1550

Comorbidities

Inflammatory Bowel Disease and IL-17

- Anti-IL-17 negative results from Crohn's Disease clinical trials
- Possible pathogenetic mechanisms
 - Candida overgrowth (IL-17 offers fungal protection)
 - Impairment in Occludin localization (tight junction protein)
 - IL-23 blockade: retain basal levels of IL-17
 - ✓ Production of IL-17 *independent of* IL-23
 - New cases?? Extremely rare
 - 7355 pts with 16.226 patient-year f/u
 - 30 new cases

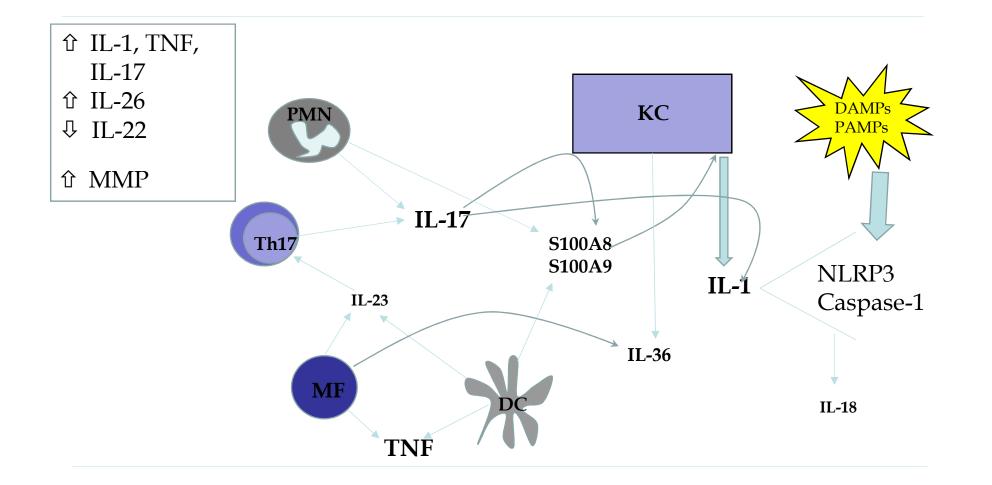
Doedhar et al Arthritis Rheumatol. 2016; 68 (suppl 10) Fobelo Lozano MI J Crohns Colitis 2018 Heuber W et al Gut 2012 Gaffen SL et al Nat Rev Immun 2012 Colombeel JF et al 2013 Whibley N et al Immunity 2015 Schreiber et al ARD, 2019

Comorbidities

Hidradenitis Suppurativa

- Chronic inflammatory skin disease
 - subcutaneous painful nodules, areas rich in apocrine glands
- 0.5-2% of the general population
- Association with cardiometabolic clinical conditions
 - Diabetes, obesity, hypertension
 - ARDs: SpA and Crohn's Disease
- Pathogenesis
 - Genetic factors (30% familial cases)
 - Intrinsic activation of keratinocytes
 - Hyperkeratosis
 - Bacterial biofilm formation

Comorbidities


Hidradenitis Suppurativa / Tissue Level

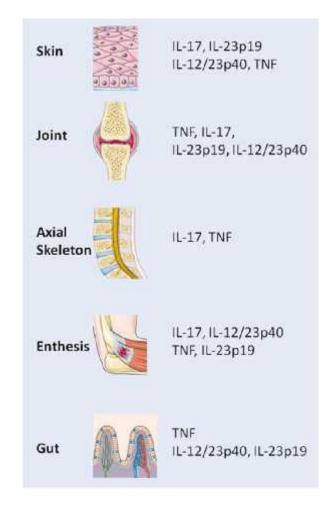
- → IL-1β, TNF, IL-17, IL-23 are ① increased
- TNF
 - is produced by dendritic cells and macrophages and its levels are associated with HS severity.
- IL-17 is produced by neutrophils, Th17 cells
 - might drive production of IL1-β by KC activating NALP3
- → IL-1
 - keratin fibers etc might act as PAMPs and DAMPS and activate inflammasome
 - KCs intrinsically activated

Constantinou et al Ther Adv Mus Res 2019 (Under Review) Rontags Semin Arthr Rheum 2019 Van der Zee et al Br J Dermat 2010

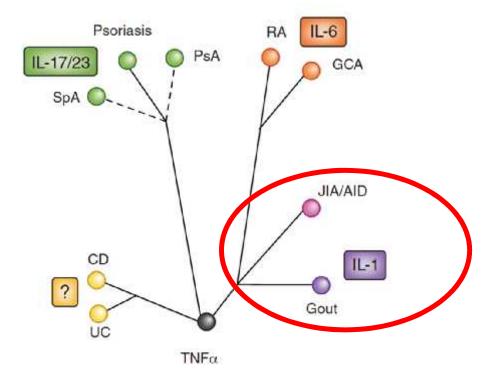
Comorbidities

Hidradenitis Suppurativa

Comorbidities


Hidradenitis Suppurativa / Treatment

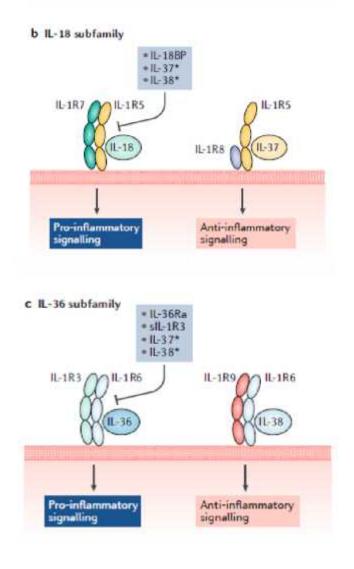
- Adalimumab (approved)
 - Two largest phase-3 trials (Pioneer I and II)
 - HISCR, was achieved, at week 12 in 41.8% and 58.9% (PBO ~ 26%)
- Infliximab
 - Performed better than ADA (small study)
- Kineret
 - HISCR was achieved in 78% at week 12 compared to 30% in PBO
- Anti-IL23 (Ustekinumab/Guselkumab) & anti-IL17
 - Promising results
 - 60-80% response
 - Phase 2 trials ongoing


Kimball AB et al NEJM 2016 Van Rappard DC et al, J Dermatolog Treat 2012 Tzanetakou V, JAMA Dermatol 2016

Summary for PsA/SpA

- Treatment dependent on
 - Cardinal feature
 - Cytokine based classification?

IL-1 & the inflammasome

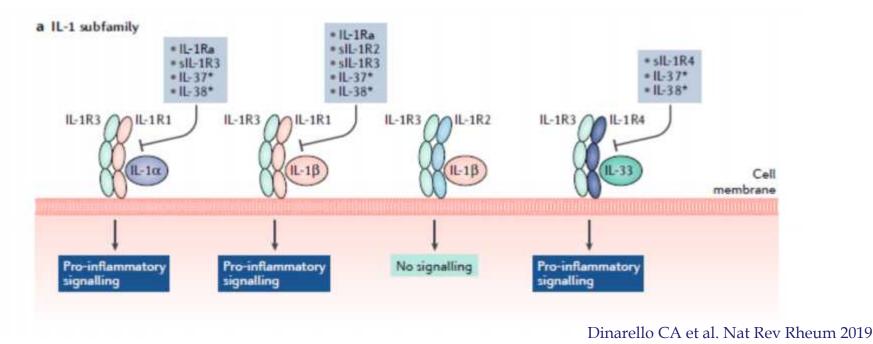

IL-1 family Essentials

- The IL-1 family of cytokines contains 11 members that either promote inflammation or limit inflammation.
- Main functions: innate immune reactions and inflammation, rather than acquired immunity
- IL-1β has emerged as pivotal for promoting inflammation, particularly in autoinflammatory diseases
- A fundamental process in IL-1 family signaling is the formation of a heterotrimeric complex containing the ligand, receptor and co- receptor
- 3 subfamilies on the basis of shared receptor or co-receptor binding

IL-1

Let's meet the family / IL-18 and IL-36 subfamilies

- ▶ IL-18 subfamily
 - IL-18 and IL-37 and bind IL-1R5 (also known as IL-18Rα)
 - IL-18 induces pro- inflammatory signaling pathways.
 - IL-18 is specifically antagonized by IL-18 binding protein (IL-18BP), which has an unusually high affinity for IL-18.
 - IL-37 promotes anti- inflammatory effects via the co-receptor IL-1R8.
- IL-36 subfamily
 - IL-36α, IL-36β, IL-36γ, IL-36Ra and IL-38 which bind IL-1R6 (also known as IL-36R)
 - IL-36 cytokines promote pro- inflammatory signalling pathways that are specifically antagonized by IL-36 receptor antagonist (IL-36Ra).
 - IL-38 is anti- inflammatory.

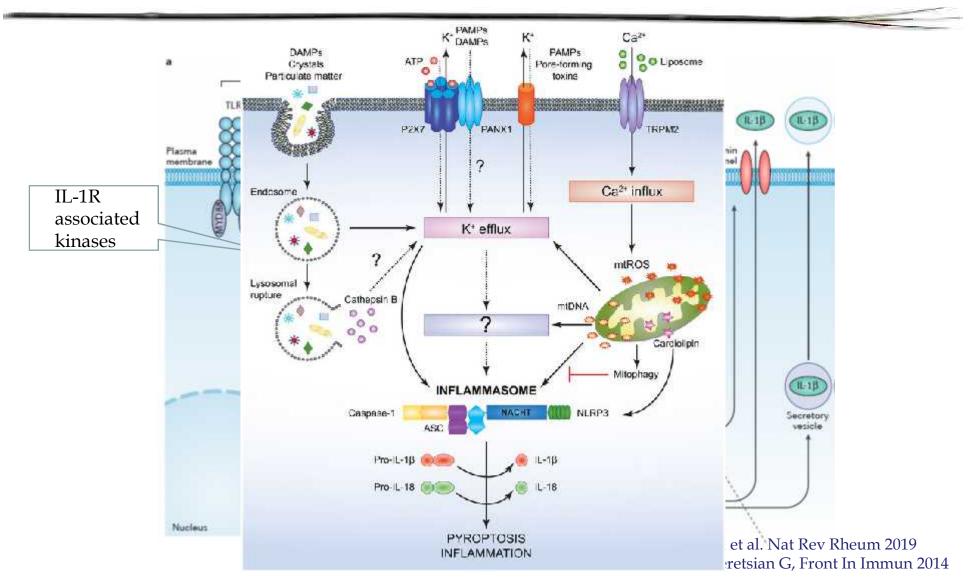


Dinarello CA et al. Nat Rev Rheum 2019

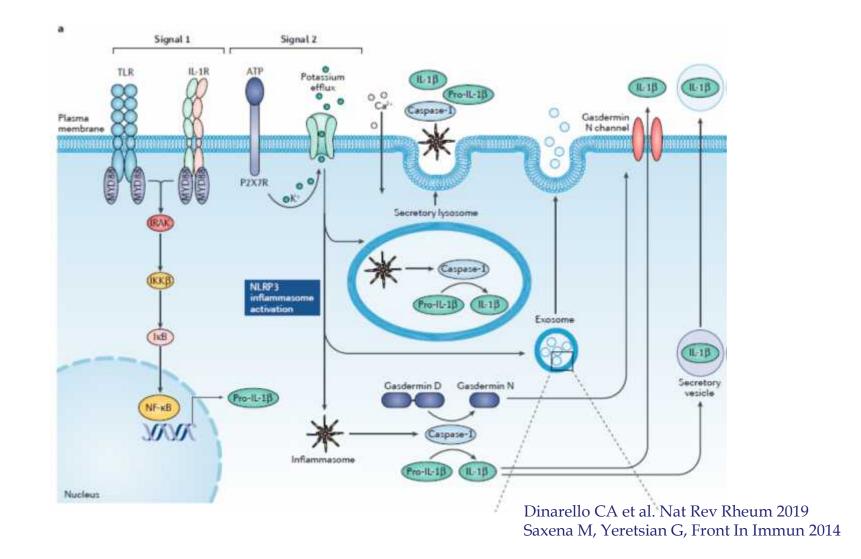
IL-1

Let's meet the family – IL-1 subfamily

- IL-1 subfamily
 - IL-1 α , IL-1 β and IL-33 bind the co- receptor IL-1R3
 - promote pro- inflammatory signaling pathways
 - IL-1 receptor antagonist (IL-1Ra) specifically reduces the activities of IL-1α and IL-1β
 - Soluble versions of IL-1 family receptors also exist, (e.g sIL-1R2) specifically binds and neutralizes IL-1β

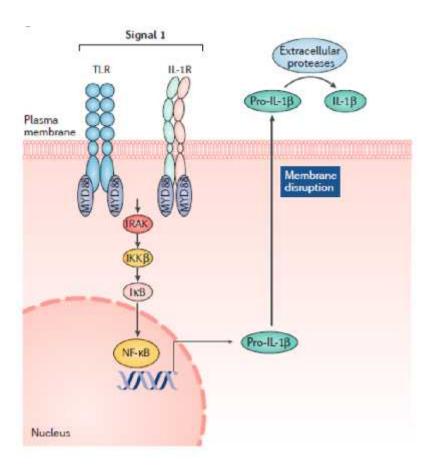


IL-1 subfamily Differences?


- ♦ pro- IL-1α
 - Is constitutively present in mesenchymal cells throughout the body
 - Is active
 - Rarely in the circulation in disease states. Primary local role, not systemic

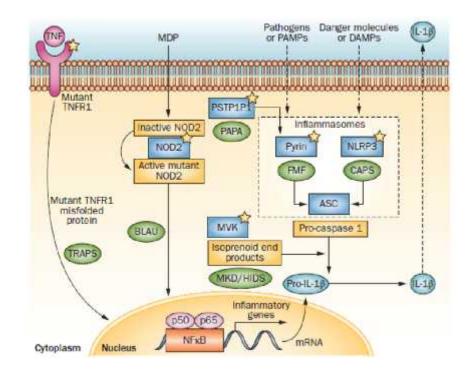
- 🔹 pro- IL-1β
 - Is only constitutive in resident macrophages
 - requires processing via caspase-1 to become active protein
 - Is found in the circulation

IL-1β Production and secretion

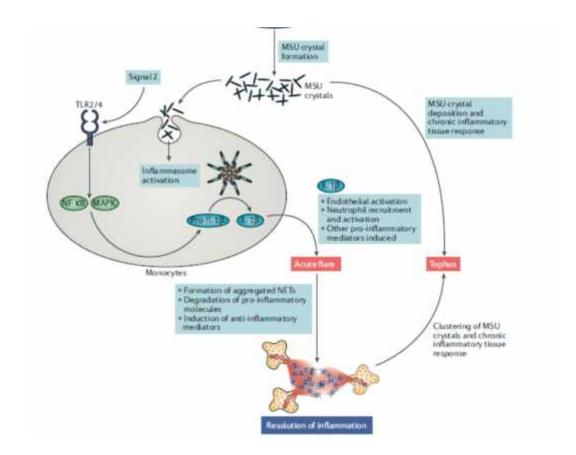


IL-1β Production and secretion

IL-1β Production and secretion


- Alternatively
 - Hypoxia, stress etc
 - Caspase-1 independent
 - Extracellular proteases

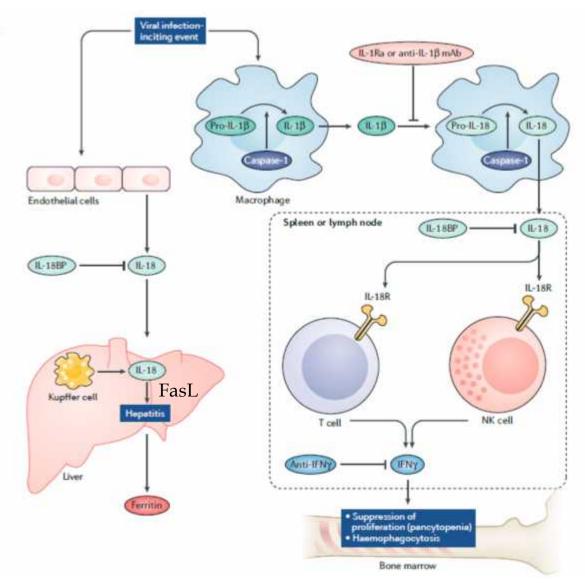
Dinarello CA et al. Nat Rev Rheum 2019


IL-1 Autoinflammatory diseases

- Cryopyrin-Associated Periodic Syndromes (CAPS)
 - Autoinflammatory diseases caused by mutations in NLRP3 (member of the NODlike receptor family)
 - Gain-of-function mutations
 - Chronic, systemic and local inflammation due to active IL-1β
- FMF
 - mutant pyrin (part of the inflammasome complex)
 - associates with the inflammasome adaptor protein ASC
 - increase IL-1β processing

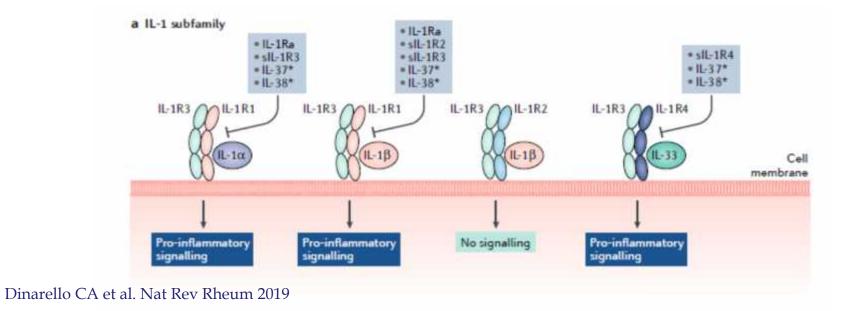
IL-1 Gout

- Fatty acids signaling via TLR2 can provide the 1st signal for the synthesis of pro- IL-1β
 - might account for the association between gout flares and dietary factors.
- MSU crystals are engulfed by synovial macrophages
 - NLRP3 is activated and caspase-1 cleaves pro- IL-1β to release mature IL-1β into the synovial space

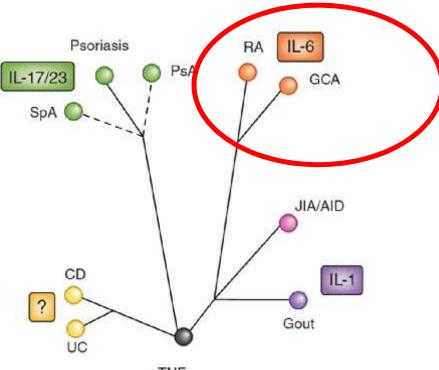


IL-1

JIA, Still, MAS

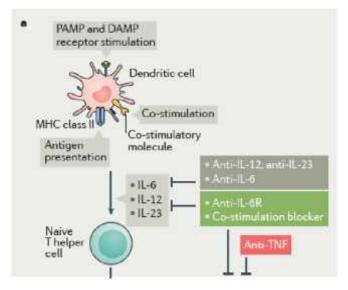

- Not clear why IL1-b plays role
 - Is elevated in the circulation or
 - released from cultured monocytes ex vivo
- Neutralization of IL-18 with IL-18BP (Tadekinig alfa)
- might be the best treatment option for treating Still's and MAS

Dinarello CA et al. Nat Rev Rheum 2019 Kiltz U et al, ARD 2018 Gabay C et al, ARD 2018



IL-1 Drugs

Drug name	Target	Type of agent	Indication(s)
Approved®			
Anakinra IL-1R1 (IL-1α and IL-1β)		Recombinant human IL-1Ra CAPS*, RA*, AoSD, sJI/ and many other off-la indications	
Rilonacept	IL-1β, IL-1α and IL-1Ra	IL-1R1 fusion protein	CAPS*, AoSD
Canakinumab	IL-1β	Anti-IL-1βmAb	AoSD*, CAPS*, FMP*, gout*, sJIA*


The IL-6

 $\mathsf{TNF}\alpha$

IL-6 pathogenesis / initiation phase

- Adventitia
 - important site of immune surveillance
 - rich in dendritic cells (DCs) and $M\Phi$
 - expressing Toll-like receptors (TLRs)
- pathogen-associated molecular patterns (PAMPs), microorganism-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs)
 - DC activation
 - leading to the production of proinflammatory cytokines such as IL-12 and IL-6, IL-23, IL-1
 - Naïve T cells activation

IL-6 amplifying inflammation & chronic phase

- Maturation of DCs
- naive CD4+ T cells polarize
 - Th1 cells
 - Production IFNγ and TNF
 - Th17 cells
 - Production IL-17 and IL-21
- +11-6 Ectopic lymphoid e + TNF structures Co-stimulation Antigen pretentation + IFNy -+IL-17 Bcell +12-22 + TNF • R-1 * IL-6 + IL-12 VSMC₅ • IL-23 + TNF · 11-6 · IL-32 + IL-33 Antigen + TNF presentation Co-stimulation VEGF Neo-vessel Macrophage formation

- Recruit macrophages
 - produce IL-1, IL-6, IL-12, IL-23, TNF and VEGF
 - Might drive GC formation and VSMC proliferation

Dejaco C et al, Nat Rev Rheum 2017

Treatment / anti-TNF failed

- ✤ No clear explanation why TNFs failed
 - Possibly redundant pathways exist

Infliximab (TNF blocker)	Randomized, multicentre, double-blinded	44	New GCA (cranial)	54 weeks	Did not achieve primary and main secondary end points	Hoffman 2007 (REF. 134) (full paper)
Etanercept (TNF blocker)	Randomized, multicentre, double-blinded	17	GCA in remission, stable oral prednisone treatment	15 months	Cumulative glucocorticoid dose: 1.5 g in etanercept versus 3.0 g in control group (p=0.03) other outcomes negative	Martinez-Taboada 2008 (REF. 137) (full paper)
Adalimumab (TNF blocker)	Randomized, multicentre, double-blinded	70	New GCA (cranial)	52 weeks	Did not achieve primary and main secondary endpoints	Seror 2014 (REF. 136) (full paper)

Treatment

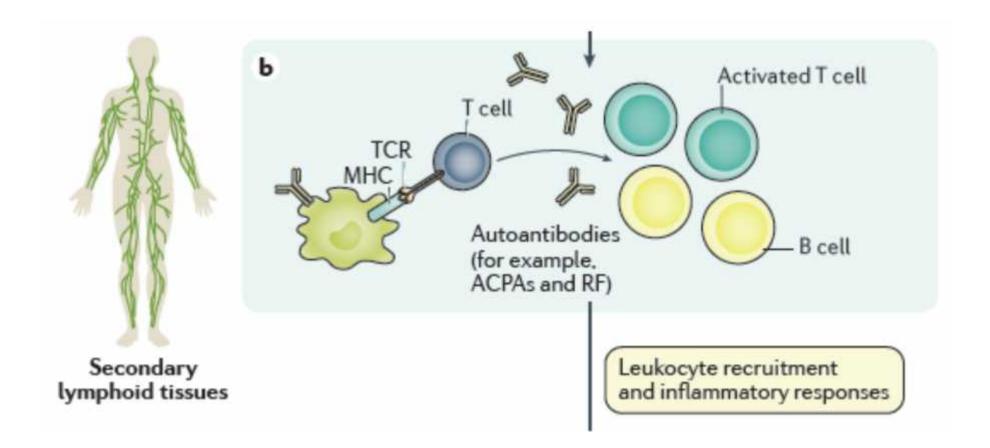
- Tocilizumab
 - Approved for GCA
 - Trial II for PMR
- Sarilumab
 - Trial III
- Secukinumab
 - Trial II
- Abatacept
 - Increase in relapse-free survival at 12 months *Vs GC monotherapy*
 - small improvement in outcome (p=0.05 for relapse free rate)
 - planned phase III RCT has been withdrawn.

Dejaco C et al, Nat Rev Rheum 2017 Low C & Conway R, Ther Adv Mus Res 2019 Langford CA et al, Arthr & Rheumatol 2017

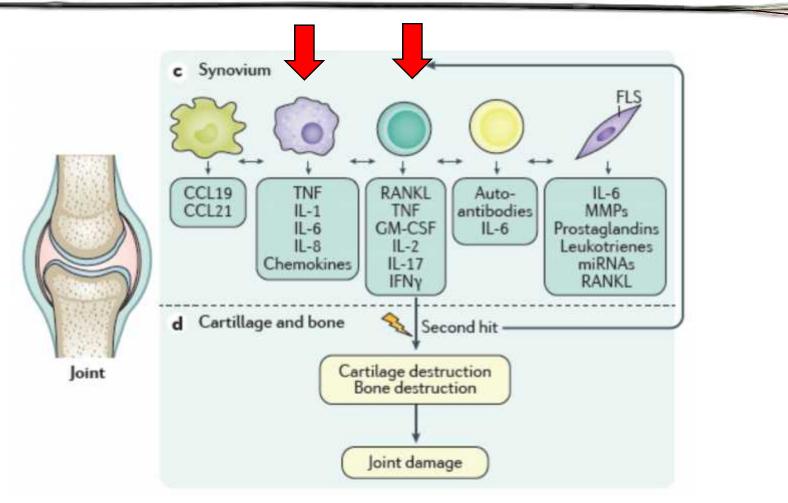
IL-6 amplifying inflammation & chronic phase

- Maturation of DCs
- naive CD4+ T cells polarize
 - Th1 cells
 - Production IFNγ and TNF
 - Th17 cells
 - Production IL-17 and IL-21
- +11-6 Ectopic lymphoid e + TNF structures Co-stimulation Antigen pretentation + IFNy -+IL-17 Bcell +12-22 + TNF • R-1 * IL-6 + IL-12 VSMC₅ • IL-23 + TNF · 11-6 · IL-32 + IL-33 Antigen + TNF presentation Co-stimulation VEGF Neo-vessel Macrophage formation

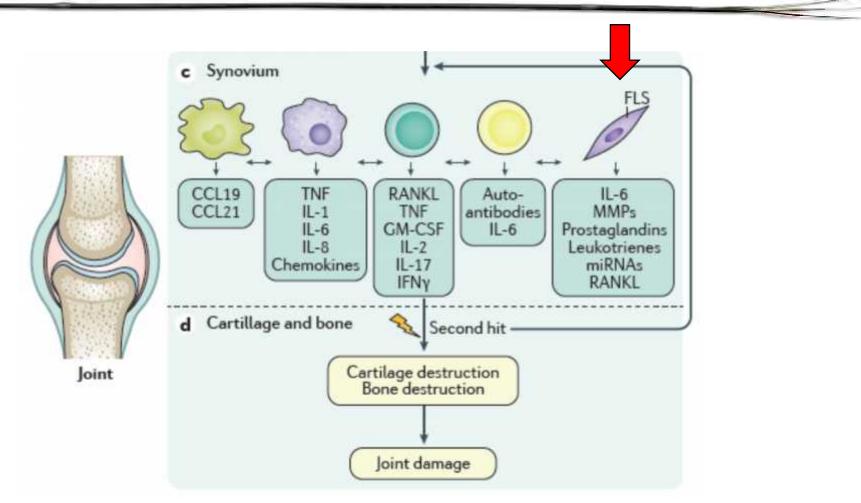
- Recruit macrophages
 - produce IL-1, IL-6, IL-12, IL-23, TNF and VEGF
 - Might drive GC formation and VSMC proliferation

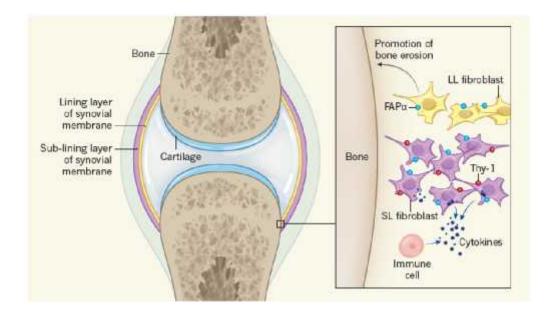

Dejaco C et al, Nat Rev Rheum 2017

Treatment – what about Ustekinumab?


- The "dual" role (IL-12 & IL-23) makes UST a potentially attractive treatment
- Open-label/small (n=25) study
 - a reduction in
 - median prednisolone dose (p < 0.001)
 - CRP (*p* = 0.006)
 - No patients had a flare of GCA while treated with ustekinumab

Dejaco C et al, Nat Rev Rheum 2017 Low C & Conway R, Ther Adv Mus Res 2019 Conway R et al, Semin Arth Rheum 2018

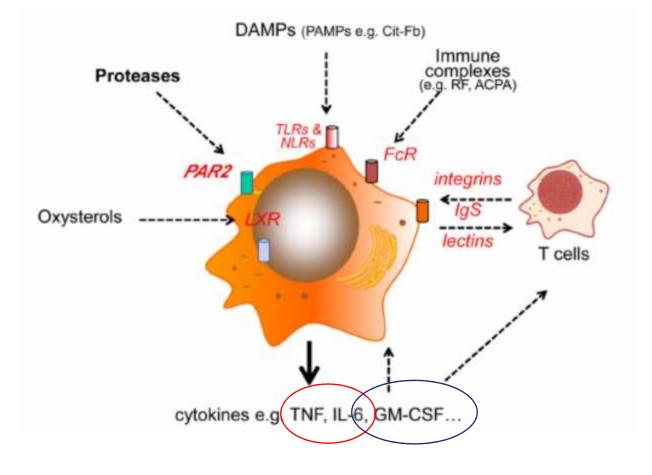

Pathogenesis


Pathogenesis

Pathogenesis

Rheumatoid Arthritis The Fibroblasts !

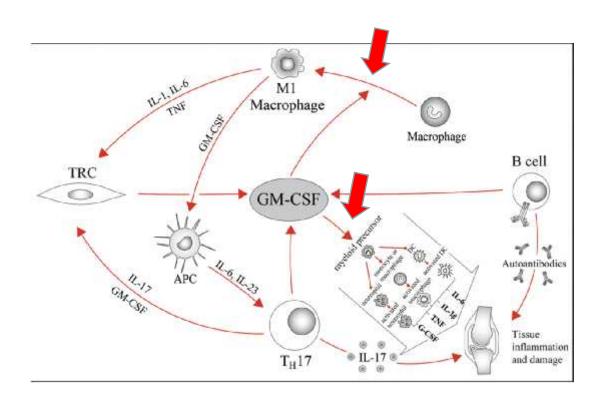
- 2 types of fibroblasts
 - FAP (fibroblast activation protein a)
 (+)
 - ~ inflammation
 - In different sublayers
 - SL (Thy-1 +)
 - Cytokines
 - LL
 - Cartilage damage


(comment) Wynn TA Nature 2019

The Fibroblasts: producing cytokines (IL-6)

- Deletion of FAPa+ cells
 - Cartilage and bone damage, inflammatory bone remodeling, pannus formation
 - Image: Image: Image: specifically neutrophils, macrophages, CD11b, dendritic cells and monocytes

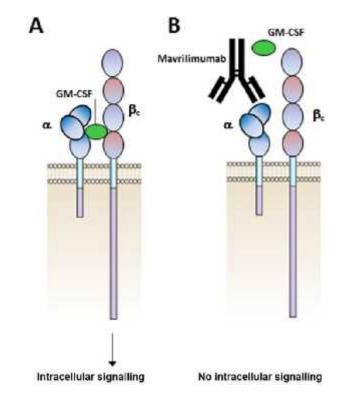
DTR- DT	TR+ DTR- DTF
Col7	CCL2
lsf2	CCL5
Col2	CCL7
Col5	CCL8
Col8	CCL11
Cc/9	CCL12
cl11	CCL19
ci19	CXCL12
xc/1	CXCL13
xci2	GMCSF
vol3	CXCL10
vol5	CXCL14
xci6	L-1
cl11	IFNY
112	IL-6
113	RANKL
114	MMP3
//6	MMP9
Tnf IIIb	
Ø18	50 100 1
gs2	
ges	
ng4	
sf 11	
mp3	
np9	
p13	


Rheumatoid arthritis Is it only TNF & IL-6

Firestein & McInnes, Immunity 2017

Granulocyte macrophage colony-stimulating factor (GM-SCF)

- GM-CSF can produced by
 - haemopoietic
 - non-haemopoietic cell
- can activate/'prime'
 - Myeloid populations (e.g PMN)
 - to produce inflammatory mediators
 - ✓ TNF
 - ✓ IL-6
 - ✓ IL1-β


Cook A and Hamilton J, Ther Adv Mus Res 2018 Avci AB et al. Clin Exp Rheum 2016

RA GM-CSF/Rationale

- Raised GM-CSF levels in RA
 - synovial fluid and plasma
 - overexpression of the GM-CSFR within cells of RA synovial tissue have been reported
 - Depletion of GM-CSF

Cook A and Hamilton J, Ther Adv Mus Res 2018 Avci AB et al. Clin Exp Rheum 2016 Deane et al ARD 2010

- Mavrilimumab has been developed
 - is a high-affinity, immunoglobulin against GM-CSFRα

RA GM-CSF/Treatment

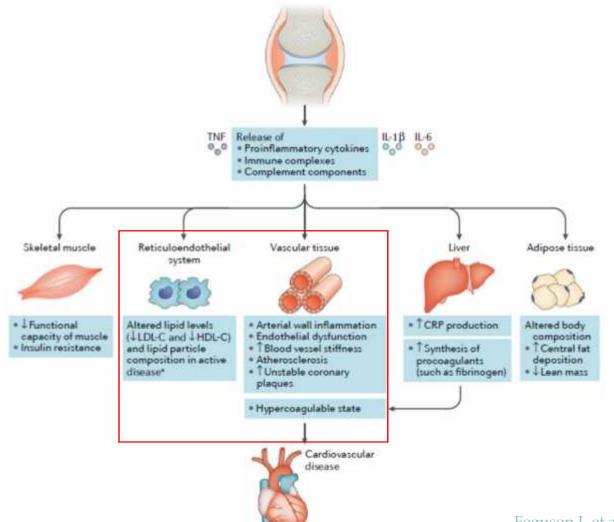
Phase IIb, NCT01706926 EARTH EXPLORER 1	30, 100, 150 mg subcutaneously doses of mavrilimumab given every other week versus placebo with stable methotrexate	DAS28-CRP change from baseline at 12 weeks ^a ACR20 response (24 weeks) ^a	Mavrilimumab 30 mg, -1.37 (0.14); 100 mg, -1.64 (0.13); 150 mg, -1.90 (0.14) versus placebo -0.68 (0.14), $p < 0.001$ [change from baseline (SE)] Mavrilimumab 30 mg, 51%; 100 mg, 61%; 150 mg, 73% versus placebo 25%, $p < 0.001$
Phase IIb, NCT01715896 EARTH EXPLORER 2	100 mg mavrilimumab subcutaneously given every other week or 50 mg golimumab subcutaneously every 4 weeks, with stable	ACR20/50/70 responses at 24 weeks ^a DAS28-CRP < 2.6 at 24 weeks ^a HAQ-DI improvement >	Mavrilimumab 62.0, 34.8, 16.1% (ACR20,50,70); golimumab 65.6, 43.4, 25.9% (ACR20,50,70) Mavrilimumab 17.4%; golimumab 29.0% (DAS28-CRP < 2.6) Mavrilimumab 58.7%; golimumab 69.0%
	methotrexate	0.22 at 24 weeks ^a	[HAQ-DI improvement > 0.22]

Despite phase II results were promising, phase III are not underway

Cook A and Hamilton J, Ther Adv Mus Res 2018 Avci AB et al. Clin Exp Rheum 2016

RA GM-CSF/Treatment

Name	Molecule/target	Manufacturer	Trial, ClinicalTrials.gov identifier	Re
GSK3196165 (previously known as MOR103)	Human mAb to GM-CSF	Developed by MorphoSys AG and in-licensed by GlaxoSmithKline	Phase Ib/Ila, NCT01023256 Phase 11a, NCT02799472 Phase IIb, NCT02504671	45
KB003	High-affinity, recombinant IgG1ĸ mAb against GM-CSF	Kalobios Pharmaceuticals	Phase II, NCT00995449	46
Namilumab (MT203)	Human IgG1 mAb against GM-CSF	Takeda	Phase lb, NCT01317797 Phase II, NCT02393378 Phase II, NCT02379091	47
MORAb-022	Human IgG1 mAb against GM-CSF	Morphotek/Esai	Phase I, NCT01357759	48


Cook A and Hamilton J, Ther Adv Mus Res 2018 Avci AB et al. Clin Exp Rheum 2016

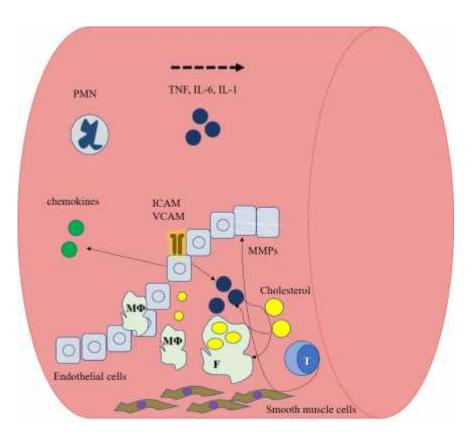
Cytokines and Comorbidities Cardiovascular risk

- We know that RA and inflammatory arthritis is general are independent risk factors for CVD
 - ◆ CVD risk 48% in RA patients *Vs* general population
 - Inflammation is the main culprit
- 🔹 IL-6
 - was associated with fatal CVD and all-cause mortality in RA women
- ✤ TNF and IL-6
 - were associated with subclinical atherosclerosis in RA, independent of Framingham score

Avina-Zubieta JA et al, ARD 2012 McKay et al Arthr Rheumatol 2015 Rho YH, Arthr Rheumatolo 2009

Cytokines and Comorbidities Cardiovascular risk – the big picture

Cytokines and Comorbidities Cardiovascular risk – data from basic science


- TNF
 - promotes the expression of tissue factor by monocytes
 - Induced apoptosis in endothelial cells
 - 1 plasma levels of tissue plasminogen activator
 - impedes endothelium-dependent vasodilatation
- » IL-6
 - Association with adhesion molecules like circulating VCAM-1, ICAM-1 and (ELAM-1) in RA patients
- IL-17
 - Enhanced genes critical for coagulation such as tissue factor and decreased thrombomodulin, leading to a pro-thrombotic state
 - ① expression of adhesion molecules by monocytes
 - Induces apoptosis in endothelial cells

Sattar N et al, Circulation 2003 Zhu F et al, Clin Immunol, 2011 Dessein PH Arthr Res Ther 2005 Hot A et al, ARD 2012

Cytokines and Comorbidities

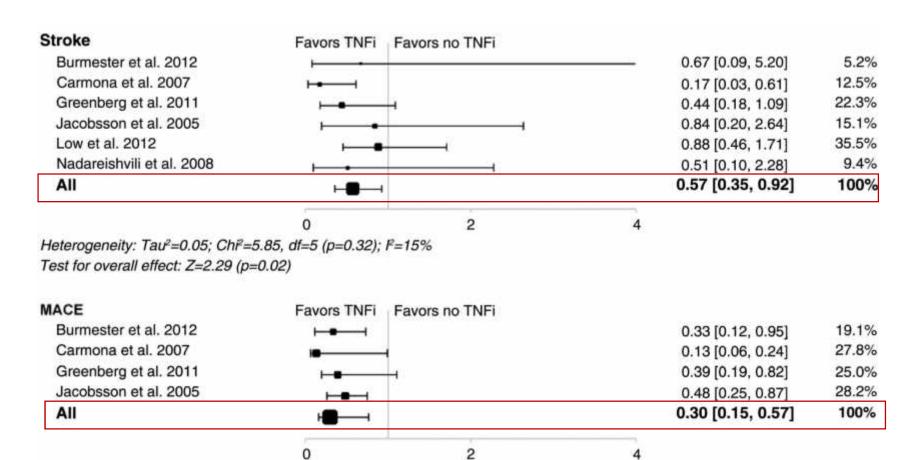
Vascular damage

- Inflammatory cytokines
 - activation of endothelial cells
 - adhesion molecules (e.g. ICAM, VCAM).
 - produce chemokines which recruit other inflammatory cells (e.g. polymorphonuclear cells)
- Inflammatory mediators promote "foam cell" formation.
 - Cholesterol further contributes to the production of proinflammatory cytokines by macrophages
- Plaque Destabilization
 - ♦ Û MMPs

Cytokines and Comorbidities Treatment – Anti-TNF

- Several studies have demonstrated a beneficial effect of TNF inhibitors on CV outcomes.
- An advantageous effect of treatment on surrogate markers for CVD has been noted
 - Blood pressure
 - Arterial stiffness (aortic pulse wave velocity)
 - Endothelial dysfunction
 - Progression of cIMT
 - Cholesterol profile
 - Mixed results, unaffected LDL

Cytokines and Comorbidities Treatment – Anti-TNF


A Tumour necrosis factor inhibitors

				RR [95% CI]	Weight
II CVE	Favors TNFi	Favors no TNFi			
Bernatsky et al. 2005	H			0.5 [0.2, 0.9]	5.6%
Bozaite-Gluosniene et al. 2011	⊢ •−−	4		0.54 [0.30, 0.95]	6.5%
Burmester et al. 2012 Carmona et al. 2007 Dixon et al. 2007		4		0.33 [0.12, 0.95] 0.13 [0.06, 0.24] 0.81 [0.47, 1.48]	3.6% 6.2% 6.3%
Greenberg et al. 2011	H+			0.39 [0.19, 0.82]	5.3%
Jacobsson et al. 2005	⊢•──→			0.48 [0.25, 0.87]	6.3%
Listing et al. 2008	*		-	1.85 [0.88, 3.90]	5.3%
Ljung et al. 2012b	F.			1.12 [0.84, 1.48]	8.79
Low et al. 2012	⊢			0.88 [0.46, 1.71]	5.8%
Lunt et al. 2010	H		0.73 [0.44, 1.23]	6.9%	
Nadareishvili et al. 2008	⊢ →			0.51 [0.10, 2.28]	2.2%
Setoguchi et al. 2008	⊢			1.61 [0.75, 3.49]	5.1%
Solomon et al. 2012	H-•			0.84 [0.62, 1.12]	8.6%
Wolfe et al. 2004	⊢•-	4		0.81 [0.67, 0.97]	9.2%
Wolfe et al. 2008	F			1.1 [0.8, 1.5]	8.5%
All				0.70 [0.54, 0.90]	100%
	0	2	4		

Heterogeneity: Tau²=0.17; Ch²=65.48, df=15 (p<0.00001); F=77% Test for overall effect: Z=2.81 (p=0.005) DD TOTOL OIL

Walaht

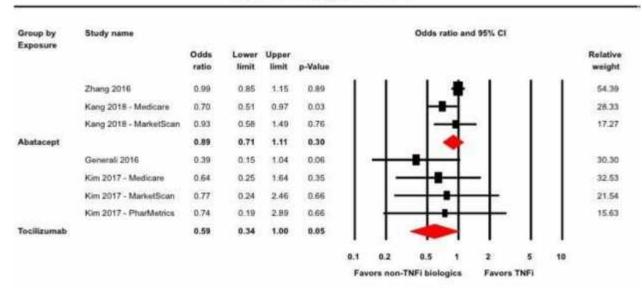
Cytokines and Comorbidities Treatment – Anti-TNF

Heterogeneity: Tau²=0.31; Ch²=10.02, df=3 (p=0.02); l²=70% Test for overall effect: Z=3.61 (p=0.0003)

Roubille et al. 2015 ARD

Cytokines and Comorbidities Treatment – Tocilizumab

- Increased levels of total cholesterol, HDL-C, LDL-C and TGs.
 - Reversal of IL-6 induced LDL clearance


BUT

- Alteration of HDL composition towards a more anti-inflammatory phenotype
 - Combined with improvement in CVD surrogate markers cIMT

Robertson J et al, ARD 2017 Krume K et al, J Rheum 2011 Nurmohamed M et al Drug Saf 2018

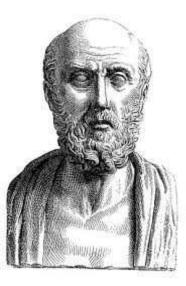
Cytokines and Comorbidities Treatment – Tocilizumab

- In recent studies using data from MediCare and Marketscan
 - CVD risk for tocilizumab was not increased compared with abatacept, rituximab and TNF-inhibitors
- → SLR and meta-analysis: Tocilizumab [‡] reduced risk of MACE *Vs* anti-TNF.

Risk of Major Adverse Cardiovascular Events: Non-TNF-biologics vs. TNFi

> Singh S et al, Arth C Res 2019 Xie F et al, Arth C Res 2019

- Are we going towards cytokine-based treatment?
 - Simple but complex
- Could that be that some cytokines are involved at an earlier stage of disease than others?
- Treating inflammatory arthritis AND comorbidities
- Other (previously "innocent") cells are contributing to the cytokine milieu.


Ευχαριστώ πολύ Ερωτήσεις

«Ιητρική τεχνέων πασέων εστίν επιφανεστάτη»

Ιπποκράτης (Νόμος 1)

"If it were not for the great variability among individuals, medicine might as well be a science and not an art"

Sir William Osler 1892

